New manual helps agencies count bike, pedestrian traffic

As part of an ongoing effort to institutionalize bicycle and pedestrian counting in Minnesota, MnDOT has published a new manual designed to help city, county, state, and other transportation practitioners in their counting efforts.

The Bicycle and Pedestrian Data Collection Manual, developed by University of Minnesota researchers and SRF Consulting Group, provides guidance and methods for collecting bicycle and pedestrian traffic data in Minnesota. The manual is an introductory guide to nonmotorized traffic monitoring designed to help local jurisdictions, nonprofit organizations, and consultants design their own programs.Bicycle and Pedestrian Data Collection Manual

Topics covered in the manual include general traffic-monitoring principles, bicycle and pedestrian data collection sensors, how to perform counts using several types of technologies, data management and analysis, and next steps for nonmotorized traffic monitoring in Minnesota. Several case studies illustrate how bicycle and pedestrian traffic data can be used to support transportation planning and engineering.

The manual was completed as part of the third in a series of MnDOT-funded projects related to the Minnesota Bicycle and Pedestrian Counting Initiative, a collaborative effort launched by MnDOT in 2011 to encourage nonmotorized traffic monitoring across the state. U of M researchers, led by professor Greg Lindsey at the Humphrey School of Public Affairs, have been key partners in the initiative since its inception.

In addition to the manual, U of M researchers have published a final report outlining their work with MnDOT on this project. Key accomplishments include:

  • A new statewide bicycle and pedestrian traffic-monitoring network with 25 permanent monitoring locations
  • A district-based portable counting equipment loan program to support MnDOT districts and local jurisdictions interested in nonmotorized traffic monitoring
  • Minnesota’s first Bicycle and Pedestrian Annual Traffic Monitoring Report
  • A MnDOT website for reporting annual and short-duration counts that allows local planners and engineers to download data for analysis
  • Provisions added to MnDOT equipment vendor agreements that enable local governments to purchase bicycle and monitoring equipment
  • Annual training programs for bicycle and pedestrian monitoring
  • Provisions in the Statewide Bicycle System Plan and Minnesota Walks that call for bicycle and pedestrian traffic monitoring and creation of performance measures based on counts

“This is an excellent resource that steps through all aspects of managing a count program, and I think it will be very helpful to other states and organizations that want to implement their own programs,” says Lisa Austin, MnDOT bicycle and pedestrian planning coordinator. “Since Minnesota is a leader in counting bicycle and pedestrian traffic, it also fulfills what I think is an obligation to share our story with others.”

MnROAD Breaks New Ground

In June, MnROAD, the only cold-weather accelerated pavement testing facility of its kind in North America, begins construction on its third phase of research since 1994, the first time MnDOT has rebuilt in partnership with other states.

Dozens of new experiments are planned along MnROAD’s test tracks in rural Albertville: the high-volume original Interstate-94 westbound (built in 1973), the mainline I-94 westbound (originally opened in 1994) and an adjacent low-volume road closed track.

Six states and numerous  industry partners recently formed the National Road Research Alliance (NRRA) to co-sponsor  the reconstruction.

NRRA-prioritized research will support state and local needs, including effective use of fiber-reinforced concrete, asphalt overlays of concrete pavements, cold central plant recycling and concrete partial depth repairs to name a few.

MnROAD has two 3.5 mile test segments on Interstate 94 and one closed 2.5-mile low-volume road.
MnROAD has two 3.5 mile test segments on Interstate 94 and one closed 2.5-mile low-volume road.

“The advantage of having these test  sections at MnROAD is we can take  bigger risks and push the envelope in terms of mix designs and layer thicknesses for both asphalt and concrete  layers that could not be done on a public roadway,” MnDOT Research Operations Engineer,   Dave Van Deusen said.

Forensic analysis of failed cells
Many old test cells will be dug up.  Before any reconstruction starts, however, each test section that is being reconstructed will receive a final forensic study. This allows researchers a look at each layer to see the distress that has occurred over the years—and make the final analysis of why it failed. There are always a lot of theories on the causes of what actually failed, but until the forensic is performed, there isn’t proof on what happened. These findings will help build longer-lasting pavements in the future.

The bid letting date for this year’s construction is April 28, but plans were made available for contractors on March 31. This should give the projects more exposure and generate more interest. Construction begins June 5 and continues until November 2017.

Focus Areas

  • HMA overlay and rehab of concrete and methods of enhancing compaction – States are looking for longer lasting HMA overlays of concrete. New mix designs were developed to promote long-term performance, including how reflective cracking effects can be minimized through design or other joint treatment.
  • Cold central plant recycling – Other states have used reclaimed asphalt pavement stockpiles into plant mix base course mixes (layers below the wear surface) to effectively recycle these materials in a controlled mix design. How can these layers best be used and what type of surface mix or chip seal can be placed on top?
  • Fiber reinforced concrete pavements – Nationally, states want to get a better understanding of the beneficial use of fibers in concrete pavement layers. Is it worth the cost? How can it be best used in both thin city streets and higher volume roadways? Can it be used in new construction and in concrete overlays? The research will provide the answers.
  • Long-term effects of diamond grinding – Each state has aggregates that have been used in concrete pavements that are considered reactive aggregates. Questions arise as to whether diamond grinding might accelerate deterioration in these pavements. What types of topical sealers can be used to treat the surface after the diamond grinding will also be tested.
  • Early opening strength to traffic – What effect does heavy traffic loading have on the long-term performance of full-depth concrete pavement, as well as fast–setting repairs? Test sections will be loaded by a pickup truck in one lane early enough to produce shallow ruts in the surface. In the other lane, a loaded 18-wheeler will travel over the new concrete immediately after it sets, and then sequentially every six hours up to 30 hours. The long-term effects of these early loadings will then be evaluated.
  • Optimizing the mix components for contractors – What effect do low-cementitious content mixes have on long-term performance and constructability of concrete pavements?  Two low cementitious content mixes will be studied to give agencies a better understanding of cost savings. Can these savings be achieved without significantly affecting long-term performance?
  • Compacted concrete pavement for local streets – Compacted concrete pavement is a form of roller compacted concrete that has a standard concrete pavement surface texture. The RCC industry has been successful in Michigan and Kansas constructing CCP pavement on local streets.  This research will determine if the texture that is accomplished is durable in harsh freeze-thaw climates.
  • Recycled aggregates in aggregate base and larger sub-base materials – States continue to look for effective ways to recycle materials into unbound bases. This research will add to MnROAD’s understanding of recycled bases and what seasonal strength values can be used for advanced mechanistic designs–and how they are affected by size/gradation.
  • Maintaining poor pavements– Road owners continually have less funding to maintain their roadway systems. What practices should be used for stabilizing both hot mix asphalt and Portland cement concrete roadways when longer-term repairs cannot be done due to funding levels?
  • Partial depth repair of concrete pavements – Agencies continually seek improved materials and methods for the repair of concrete pavements. In this study, up to 15 innovative concrete pavement repair materials will be evaluated on the concrete panels of the westbound I-94 bypass parallel to the MnROAD mainline.
  • Thin overlays-Experimenting with very thin overlays could provide a real benefit for a lot the roads currently out there. The premise is that with thin overlays, the ride can be smoother and the life of older roads can be extended.

“We don’t often get to reconstruct random roads these days, and when we do, we have much better specifications for low temperature cracking. By the same token, we have to maintain all those older roads built before we had performance grade binders,” said Dave Van Deusen, Materials and Road Research Lab principal engineer. “We will be doing this makeover on an original section of MnROAD built back in the 90’s.”

In one experiment, there is a head-to-head comparison of thin overlays on two sections of road. One section has a thick base and subbase under the asphalt. The other has a heavy asphalt top with very little base.

Van Deusen says if they can get an extra five years of life out of road using thin overlays, he would be pleased. Often, he admits, he is surprised by how long these “short-term” fixes actually last.

Stay up-to-date on construction by signing up for email alerts at mndot.gov/mnroad.  

A Look at Local Bridge Removal Practices and Policies

Many local agencies in Minnesota lack funding to construct and maintain all the bridges in their roadway network. One way to lower costs is to reduce the number of bridges.

In Minnesota, some township bridges are on roads with low usage that have alternative accesses for nearby residents, but local officials are reluctant to remove the bridges.

To identify possible changes to how redundant and low-use bridges are identified and removed in Minnesota, the Local Road Research Board conducted a transportation research synthesis, “Local Bridge Removal Policies and Programs,” that explores how other states make bridge removal decisions.

Fifteen state DOTs responded to a survey about their processes, with varying levels of state oversight identified for bridge removal decisions. Researchers also examined funding and incentives offered by some DOTs to local agencies for bridge removal, as well as criteria for considering bridge removal.

A literature search of bridge design manuals, inspection manuals and bridge programs was also conducted to identify related policies and programs.

Read the TRS to learn more about the various bridge removal policies and procedures in place in Minnesota and other states.

Work-zone warnings could soon be delivered to your smartphone

Imagine that you’re driving to work as usual when your smartphone announces, “Caution, you are approaching an active work zone.” You slow down and soon spot orange barrels and highway workers on the road shoulder. Thanks to a new app being developed by University of Minnesota researchers, this scenario is on its way to becoming reality.

“Drivers often rely on signs along the roadway to be cautious and slow down as they approach a work zone. However, most work-zone crashes are caused by drivers not paying attention,” says Chen-Fu Liao, senior systems engineer at the U’s Minnesota Traffic Observatory. “That’s why we are working to design and test an in-vehicle work-zone alert system that announces additional messages through the driver’s smartphone or the vehicle’s infotainment system.”

As part of the project, sponsored by MnDOT, Liao and his team investigated the use of inexpensive Bluetooth low-energy (BLE) tags to provide in-vehicle warning messages. The BLE tags were programmed to trigger spoken messages in smartphones within range of the tags, which were placed on construction barrels or lampposts ahead of a work zone.

17245-NR20F5

The researchers also developed two applications for the project. First, they designed a smartphone app to trigger the audio-visual messages in vehicle-mounted smartphones entering the range of the BLE work-zone tags. A second app allows work-zone contractors to update messages associated with the BLE tags remotely, in real time, to provide information on current conditions such as workers on site, changes in traffic, or hazards in the environment.

Field tests proved the system works. “We found that while traveling at 70 miles per hour, our app is able to successfully detect a long-range BLE tag placed more than 400 feet away on a traffic barrel on the roadway shoulder,” Liao says. “We also confirmed the system works under a variety of conditions, including heavy traffic and inclement weather.”

“This was a proof of concept that showed that smartphones can receive Bluetooth signals at highway speeds and deliver messages to drivers,” says Ken Johnson, work-zone, pavement marking, and traffic devices engineer at MnDOT. “Future research will look into how we should implement and maintain a driver alert system.”

This future work includes using the results of a human factors study currently under way at the U’s HumanFIRST Laboratory to create recommendations for the in-vehicle message phrasing and structure. Then, researchers plan to conduct a pilot implementation with multiple participants to further evaluate the system’s effectiveness.

According to MnDOT, another phase of the project may investigate how to effectively maintain the BLE tag database. This phase could also investigate implementation options, such as how MnDOT can encourage drivers to download and use the app.

Taconite byproduct reduces road wear from studded tires

In a recent project, the Alaska Department of Transportation (DOT) used a byproduct of Minnesota’s taconite mining industry for a section of the Alaska Glenn Highway.

The taconite byproduct—Mesabi sand—serves as the aggregate of a sand-seal treatment for a 4,600-foot stretch of the highway just north of Anchorage. Sand seals are an application of a sealer, usually an emulsion, immediately followed by a light covering of a fine aggregate (the sand).

“Our goal was to explore pavement preservation measures that extend pavement life and that also resist studded tire wear,” says Newton Bingham, central region materials engineer with the Alaska DOT. “Studded tires are allowed from mid-September until mid-April, and they cause rapid pavement wear.”

For the project, the Alaska DOT obtained sample pavement cores from the test area in 2014. Researchers then applied sand seals with two different hard aggregates—calcined bauxite and the Mesabi sand—to the surface of the cores to evaluate the effectiveness of each treatment.

Larry Zanko, senior research program manager of the Natural Resources Research Institute (NRRI) at the University of Minnesota Duluth, was the on-site representative for the taconite sand analysis. NRRI focuses on strategies to recover and utilize mineral-resource-based byproducts such as taconite and find potential beneficial end-uses for them.

“Taconite is one of the hardest natural aggregates,” he says. “Minnesota’s taconite mining industry generates tens of millions of tons of byproduct materials every year that could be used as pavement aggregate. Friction aggregates could be a higher-value niche for the industry.”

Testing of the sand-seals showed similar wear resistance for both types of aggregates. “We chose taconite sand since it is available from Minnesota as an industrial byproduct, whereas calcined bauxite sand has to be imported from nations on the Pacific Rim and costs more due to shipping,” Bingham says.

The Alaska DOT reports good performance to date on Glenn Highway and is funding ongoing pavement wear measurement.

NRRI researchers are also studying the use of taconite for other pavement applications. Funded by MnDOT, Zanko’s team developed (and later patented) a taconite compound for repairing pavement cracks and patching potholes (see an article the September 2016 Catalyst). The long-lasting patches reduce maintenance costs and traffic disruption. In continuing work funded by the Minnesota Local Road Research Board, researchers will refine the repair compound and develop and field-test a low-cost mechanized system for pavement and pothole repairs.

New Study: Experimental Shear Capacity Comparison Between Repaired and Unrepaired Girder Ends

MnDOT Research Services recently executed a contract with the University of Minnesota to begin work on a research study titled “Experimental Shear Capacity Comparison between Repaired and Unrepaired Girder Ends.”

The research will determine if a bridge repair to the TH 169 Nine Mile Creek Bridge near Edina and Minnetonka was sufficient to restore the original strength of a girder end in shear. Load testing to failure will be conducted on two repaired girder ends and two unrepaired girder ends that will be removed from the bridge. Objectives include a comparison of the failure load between the repaired ends and the unrepaired ends. The test results also will provide some answers to questions on whether shotcrete is a structural repair or if it is just a covering over of deterioration.

Carol Shield, professor at the University of Minnesota’s Department of Civil Engineering, Civil, Environmental, and Geo- Engineering, will serve as the research project’s principal investigator. Paul Pilarski, MnDOT bridge engineer, will serve as the study’s technical liaison.

According to the initial work plan in the contract, the project is scheduled to be completed by the end of March 2018.

Background

Over time, the south bound exterior girder ends on each side of Pier 4 and Pier 26 of the TH 169 Nine Mile Creek Bridge have suffered significant corrosion damage that exposed shear reinforcement, exterior flange prestressing strands, and the sole plate anchorages. Girder ends were repaired in September 201 3 by encasing a 4-foot length of the end using a system of dowels, additional shear reinforcement, and shotcrete. The bridge is scheduled for replacement in 2017.

There is interest in determining if the repair was sufficient to restore the original strength of the girder end in shear. Load testing to failure will be conducted on two repaired girder ends and two unrepaired girder ends that will be removed from the bridge. Objectives include a comparison of the failure load between the repaired ends and the unrepaired ends.

Project Objective

The ability to effectively repair corrosion damaged girder ends extends the useful life of prestressed concrete bridges. These repairs are significantly less expensive than replacing the bridge. Repairing bridges is also beneficial to the traveling public as travel is not interrupted, or interrupted for a significantly shorter time than for bridge replacement. Experimentally demonstrating that the repair restores the girders up to the design strength enhances the safety of the bridge and provides MnDOT with a documented substantiated repair method that can be applied to other bridge girders in a similar state.

Project Scope

When the southbound lanes of the TH 169 Nine Mile Creek Bridge are taken out of service, the contractor will remove four prestressed girders from the structure and deliver the south ends of them to the University’s Department of Civil Engineering Theodore V. Galambos Structures Lab. Two of the girders will have ends that have been repaired. The other two girders will be of the same shear design but will not have been repaired, nor show significant signs of corrosion. Once at the Galambos Laboratory decks will be cast on the girders. One end of each girder will be tested to failure using a setup designed to precipitate a shear failure. Failure loads between the repaired and original undamaged girder ends will be compared. The development of crack patterns under load will also be documented to further understand the behavior of the repair.

Assistance

MnDOT will make arrangements for transportation of the girder ends to the University’s Civil Engineering Building. MnDOT will request that the contractor provide weights of the cut girders prior to delivery. MnDOT will make arrangements with the contractor to take concrete cores from the short end of the cut girders and provide the existing bridge bearing pads. MnDOT will provide calculations for determining the required deck width and concrete strength to avoid a flexural failure.

Bicycling industry, events have economic impact in Minnesota

The bicycling industry in Minnesota—including manufacturing, wholesaling, retail sales, and non-profits and advocacy groups—produced an estimated total of $780 million of economic activity in 2014. This includes 5,519 jobs and $209 million in annual labor income (wages, salaries, and benefits) paid to Minnesota workers.

These findings are an important component of a multifaceted report from U of M researchers. Their research, funded by MnDOT, provides a comprehensive understanding of the economic impact and health effects of bicycling in Minnesota.

“This kind of bicycling study is definitely new for Minnesota but also new nationally,” says Sara Dunlap, principal planner in MnDOT’s Office of Transit. “This is the first time a state has attempted to assess, in a single study, the multiple impacts that bicycling activities have on the state’s economy and health.”

Xinyi Qian, an Assistant Extension Professor in the U’s Tourism Center, was the project’s principal investigator. For the bicycling industry portion of the work, the co-investigators were Neil Linscheid, Extension Educator, and Brigid Tuck, senior economic impact analyst, both with U of M Extension.

“Information about the bicycling industry is scattered, so we filled the information gaps by creating a list of bicycle-related businesses in Minnesota, interviewing bicycle-related business leaders, surveying bicycle-related businesses, and gathering additional information from relevant sources,” Linscheid says. “Numerous industries and a diverse supply chain are involved.”  The research team then used this information to enhance an economic model that shows the economic contribution of the bicycling industry in Minnesota.

“Minnesota has a strong bicycle-related manufacturing industry that drives the bicycle-related economy,” Tuck says. “Specialty bicycle retail stores, especially independent ones, are a critical component of the bicycle retail industry in Minnesota.” Additionally, she says, when asked about local suppliers, bicycling businesses often provided names of other Minnesota companies, many of which are also bicycle-related businesses.

Researchers also looked at the economic impact of bicycling events—races, non-race rides, fundraising events, mountain bicycling events, high school races, and bicycle tours. Qian led this portion of the study, working with Tuck.

Through surveys and analysis, they found that an average bicycle event visitor in 2015 spent a total of $121 per day. This spending translates into an estimated total of $14 million of annual economic activity, which includes $5 million in annual labor income and 150 jobs. Event participants also brought additional people with them— more than 19,000 visitors who were travel companions but did not ride in any event.

The findings can help bring together event organizers and officials of various organizations—economic development, transportation, public health, and tourism—to promote the event facilities, the host communities, and bicycle tourism as a whole.

“Bicycling event attendees and their travel companions are a valuable audience for shopping, recreation, and amusement activities,” Qian says. “Communities hosting events could explore opportunities to capture additional spending from these important visitors.”

Qian notes that the analysis focused on event visitors and was not a broad measure of bicycle tourism.

A previous post discussed the health impacts component of the study; in April, we’ll report on the magnitude of biking in the state.

More information:

Infrared Sensing Not Yet Suitable for HOV/HOT Lane Enforcement

Could the same infrared technology that’s used by security firms to detect trespassers be used to spot carpool lane violators? Not yet, says new research sponsored by MnDOT, which shows that to consistently detect passengers through windshield glass, the system would require a laser that might harm people’s eyes.

“Some vendors have proposed significant investments in sensing technology for HOV/HOT lane enforcement,” said Nikos Papanikolopoulos, Professor, University of Minnesota Department of Computer Science and Engineering. “This research demonstrated that it’s not safe, so the tests saved a lot of money and protected the well-being of drivers.”

“Development is still continuing in the industry, so we will cautiously evaluate sensing technologies as they come along,” said Brian Kary, MnDOT Freeway Operations Engineer. “This research gave us a solid base of knowledge about what we’ll be looking for and what we need to avoid.”

Papanikolopoulos served as the research project’s principal investigator, and Kary served as technical liaison.

What Was the Need?

High-occupancy vehicle/high-occupancy toll (HOV/HOT) lanes have gained popularity in recent years as a way to address highway congestion in urban areas. However, enforcing the provisions that either prohibit or charge a toll to single-occupant vehicles in HOV/HOT lanes can be challenging. Currently, enforcement is handled by law enforcement officers, but this is a labor-intensive process that can’t catch every violator and can create a traffic safety hazard.

Obtaining technology to assist officers with enforcement is a goal for MnDOT and many other agencies that operate HOV/HOT lanes, and several manufacturers are working to develop enforcement cameras. But this has proven to be a difficult task. Window tinting and glare from sun-light can thwart common sensing technologies like video cameras and microwave radar (commonly used in speed limit enforcement). Previous research using near-infrared sensors has shown promise, but none has produced completely successful results.

This study tested Honeywell’s Tri-Band Infrared (TBI) sensor, which was originally used to automatically detect intrusions at high-security entrance gates. In addition to a black-and-white camera and an illuminator, the TBI has two co-registered near-infrared cameras. The system takes advantage of the fact that human skin reflects infrared light much more effectively at wavelengths below 1400 nanometers. The TBI’s infrared cameras are sensitive to different wavelengths, one below and one above that threshold, and fusing the images from these two cameras makes silhouettes of faces more prominent.

What Was Our Goal?

The goal of this project was to evaluate whether the TBI sensor is suitable for HOV/HOT lane enforcement applications.

Illuminator
Infrared lasers helped the TBI sensor detect people through glass, but they also pose a danger to eye safety.

What Did We Do?

Investigators first tested the sensor outdoors on oncoming vehicles with known positions that ranged from 25 to 140 feet from the sensor. These tests demonstrated that the sensor had limited ability to penetrate modern vehicle glass, possibly because the system’s illuminator component was ineffective.

Investigators purchased two infrared lasers providing illumination at wavelengths of 1064 nanometers and 1550 nanometers to increase the TBI sensor’s ability to detect people through windshield glass. Then they conducted indoor tests to compare the impact of these illuminators with that of the original illuminator: With a test subject holding front passenger windows from several manufacturers in front of his face, the lasers were aimed at the subject while the TBI attempted to detect him.

Finally, investigators conducted outdoor tests using the TBI to detect people in three test vehicles from the front and the side under both sunny and cloudy conditions. These tests were conducted both without illumination and with the aid of high-power incandescent spotlights modified to output infrared light, and with the sensor at several different distances from the vehicles.

What Did We Learn?

The indoor tests demonstrated that when aided by supplementary illuminating lasers, the TBI sensor was capable of detecting humans through commonly manufactured vehicle window glass.

However, to achieve successful results, these lasers must operate with high power in a narrow range of wavelengths. Despite operating outside the visible spectrum, they can damage human eyes when operating at the necessary power level to enable effective detection through glass. While investigators conducted this project’s indoor tests with adequate protection, there is currently no way to ensure safe usage of the lasers in real-world applications.

In the second outdoor tests, the unilluminated sensor successfully detected a passenger only once out of 24 attempts. With illumination, the sensor successfully detected people in some cases, particularly when there was no direct sunlight or reflective glare. One surprising discovery was that high-band (above 1400 nanometers) infrared light penetrated window glass more consistently, even though the low band had more spectral energy.

What’s Next?

Due to safety concerns about using the illuminating laser at a high enough power to penetrate all windshield glass, the system is not suitable for HOV/HOT lane enforcement. There is some indication that sensor technology has improved since the release of the TBI, and MnDOT will continue to monitor industry developments, but it has no current plans to pursue using infrared cameras for this application.

The technology may be suitable for other sensing applications that do not require high-power illumination. For example, the sensors might be useful in systems that provide information to drivers in real time, such as applications that identify available truck parking spaces in rest areas or that alert drivers to the presence of workers in work zones.

This Technical Summary pertains to Report 2017-05, “Sensing for HOV/HOT Lanes Enforcement,” published February 2017. The full report can be accessed at mndot.gov/research/reports/2017/201705.pdf. 

I-35W ‘Smart Bridge’ Test Site Uses Vibration Data to Detect Bridge Defects

By analyzing vibration data from the I-35W St. Anthony Falls Bridge, MnDOT is working to develop monitoring systems that could detect structural defects early on and ultimately allow engineers to improve bridge designs.

“With data spanning several years, the I-35W St. Anthony Falls Bridge offers a unique opportunity for investigating the environmental effects on a new concrete bridge in a location with weather extremes,” said Lauren Linderman, Assistant Professor, University of Minnesota Department of Civil, Environmental and Geo-Engineering. Linderman served as the research project’s principal investigator.

“This project gets MnDOT closer to using bridge monitoring systems in combination with visual inspection to help detect structural problems before they affect safety or require expensive repairs,” said Benjamin Jilk, Principal Engineer, MnDOT Bridge Office. Jilk served as the research project’s technical liaison.

2017-01-bridge.png
Completed in 2008, the I-35W St. Anthony Falls Bridge has a smart bridge monitoring system that includes hundreds of sensors.

What Was the Need?

In September 2008, the I-35W St. Anthony Falls Bridge was constructed to include a “smart bridge” electronic monitoring system. This system includes more than 500 sensors that continuously provide data on how the concrete structure bends and deforms in response to traffic loads, wind and temperature changes. Transportation agencies are increasingly interested in such systems. As a complement to regular inspections, they can help detect problems early on, before the problems require expensive repairs or lead to catastrophic failure. Smart bridge systems can also help engineers improve future bridge designs.

The smart bridge system on the I-35W St. Anthony Falls Bridge includes accelerometers, which provide data on the way the bridge vibrates in response to various stimuli, including structural damage. Vibration-based monitoring has the advantage of allowing damage to be detected at any location within the bridge rather than only at the specific locations where measuring devices have been placed.

However, it can be difficult to use vibration monitoring to detect damage when vibration is masked by the bridge’s natural response to traffic loads, wind, temperature changes and other environmental conditions. A crack in a bridge girder, for example, can produce a vibration signature similar to one produced by a change in beam length due to variations in temperature or other causes. Consequently, since 2008 MnDOT has conducted a series of projects using data from the St. Anthony Falls Bridge to establish a way to distinguish anomalous data indicating a structural defect or damage from background “noise” associated with other causes.

What Was Our Goal?

This project sought to develop a method for analyzing accelerometer data from the I-35W St. Anthony Falls Bridge that would show how the bridge naturally vibrates due to traffic, wind and other environmental conditions. With this fingerprint of the bridge’s natural vibration, engineers would have a baseline against which to measure anomalies in the data that might indicate structural damage.

What Did We Do?

A large amount of data has been collected from the bridge since its construction. To establish the vibratory fingerprint for the bridge, researchers examined the frequencies and shapes (or modes) of bridge vibration waves. The method they used to identify the data segments needed for the fingerprint was to evaluate the peak amplitude of bridge vibration waves and their root mean square (RMS), a measure of the intensity of free vibration.

The researchers applied this method to the vibration data collected on the I-35W St. Anthony Falls Bridge between April 2010 and July 2015, calculating the average frequencies for four wave modes and determining how they varied with the bridge’s temperature. They also calculated the way frequencies changed with the bridge’s thermal gradients, or variations in temperature between parts of the structure.

What Did We Learn?

The methods developed in this project were successful in establishing a fingerprint for the way the I-35W St. Anthony Falls Bridge vibrates due to environmental conditions, and a way to evaluate changes in vibration over time indicative of structural damage or other factors.

Researchers found that the ratio of peak signal amplitude to RMS in bridge vibrations was a strong indicator of data that should be analyzed, and was evidence of a large excitation followed by free vibration. By themselves, peak amplitude and RMS cannot distinguish between ambient free vibration and forced vibration.

Researchers were able to use this method to successfully analyze 29,333 data segments from the I-35W St. Anthony Falls Bridge. This analysis revealed that as temperature increases, the natural frequency of vibration tends to decrease. The magnitude of this change, they concluded, must be related not just to the elasticity of the bridge but also to other factors such as humidity. However, temperature gradients within the bridge did not appear to have a significant effect on the natural frequencies of the structure.

What’s Next?

MnDOT will continue to collect data from the bridge as it ages to further understand its behavior. This will provide an opportunity to determine how anomalies in vibration data correspond to cracking and other forms of structural distress. Ultimately, MnDOT hopes to use this bridge monitoring system in combination with visual inspection both to detect problems in bridges earlier and to develop better bridge designs. Researchers are also currently working on a follow-up project, Displacement Monitoring of I-35W Bridge with Current Vibration-Based System, to determine the effects of temperature on the bridge’s dynamic and long-term vertical displacements, which can be used to monitor the bridge’s stiffness, connections and foundations.

—-

This post pertains to Report 2017-01, Feasibility of Vibration-Based Long-Term Bridge Monitoring Using the I-35W St. Anthony Falls Bridge, published January 2017. 

Videos trace progress in traffic operations, pavement design

Last month, CTS debuted two videos about the many contributions U of M researchers have made—and are still making—in traffic operations and pavement design.

The videos are one of the ways CTS is marking 30 years of transportation innovation. Our goal is to show how research progresses over time—from curiosity to discovery to innovation. The videos also show how U of M research meets the practical needs of Minnesotans in the Twin Cities metro and throughout the state.

The first video focuses on improving traffic operations, a research focus since our earliest days. Professor Emeritus Panos Michalopoulos invented Autoscope® technology to help transportation agencies capture video images of traffic and analyze the information, enabling better traffic management. Autoscope was commercialized in 1991, and the technology has been incorporated into products sold and used worldwide.

Current traffic operations research builds on this strong foundation. For example, the U’s Minnesota Traffic Observatory, directed by John Hourdos, develops data collection tools such as the Beholder camera system. The system is deployed on high-rise rooftops overlooking a stretch of I-94 in Minneapolis—an area with the highest crash frequency in Minnesota—to help the Minnesota Department of Transportation reduce congestion and improve safety.

The second video showcases U of M research on pavement design. Developing pavements that can stand up to Minnesota’s harsh climate is a continuing priority for researchers, whose work has led to new methods, tools, and specifications to extend pavement life. The video also looks at how research teams are pushing the envelope with use of materials such as taconite waste and graphene nano-platelets for pavement applications.

 

Minnesota's transportation research blog