Tag Archives: pavement preservation

MnROAD Breaks New Ground

In June, MnROAD, the only cold-weather accelerated pavement testing facility of its kind in North America, begins construction on its third phase of research since 1994, the first time MnDOT has rebuilt in partnership with other states.

Dozens of new experiments are planned along MnROAD’s test tracks in rural Albertville: the high-volume original Interstate-94 westbound (built in 1973), the mainline I-94 westbound (originally opened in 1994) and an adjacent low-volume road closed track.

Six states and numerous  industry partners recently formed the National Road Research Alliance (NRRA) to co-sponsor  the reconstruction.

NRRA-prioritized research will support state and local needs, including effective use of fiber-reinforced concrete, asphalt overlays of concrete pavements, cold central plant recycling and concrete partial depth repairs to name a few.

MnROAD has two 3.5 mile test segments on Interstate 94 and one closed 2.5-mile low-volume road.
MnROAD has two 3.5 mile test segments on Interstate 94 and one closed 2.5-mile low-volume road.

“The advantage of having these test  sections at MnROAD is we can take  bigger risks and push the envelope in terms of mix designs and layer thicknesses for both asphalt and concrete  layers that could not be done on a public roadway,” MnDOT Research Operations Engineer,   Dave Van Deusen said.

Forensic analysis of failed cells
Many old test cells will be dug up.  Before any reconstruction starts, however, each test section that is being reconstructed will receive a final forensic study. This allows researchers a look at each layer to see the distress that has occurred over the years—and make the final analysis of why it failed. There are always a lot of theories on the causes of what actually failed, but until the forensic is performed, there isn’t proof on what happened. These findings will help build longer-lasting pavements in the future.

The bid letting date for this year’s construction is April 28, but plans were made available for contractors on March 31. This should give the projects more exposure and generate more interest. Construction begins June 5 and continues until November 2017.

Focus Areas

  • HMA overlay and rehab of concrete and methods of enhancing compaction – States are looking for longer lasting HMA overlays of concrete. New mix designs were developed to promote long-term performance, including how reflective cracking effects can be minimized through design or other joint treatment.
  • Cold central plant recycling – Other states have used reclaimed asphalt pavement stockpiles into plant mix base course mixes (layers below the wear surface) to effectively recycle these materials in a controlled mix design. How can these layers best be used and what type of surface mix or chip seal can be placed on top?
  • Fiber reinforced concrete pavements – Nationally, states want to get a better understanding of the beneficial use of fibers in concrete pavement layers. Is it worth the cost? How can it be best used in both thin city streets and higher volume roadways? Can it be used in new construction and in concrete overlays? The research will provide the answers.
  • Long-term effects of diamond grinding – Each state has aggregates that have been used in concrete pavements that are considered reactive aggregates. Questions arise as to whether diamond grinding might accelerate deterioration in these pavements. What types of topical sealers can be used to treat the surface after the diamond grinding will also be tested.
  • Early opening strength to traffic – What effect does heavy traffic loading have on the long-term performance of full-depth concrete pavement, as well as fast–setting repairs? Test sections will be loaded by a pickup truck in one lane early enough to produce shallow ruts in the surface. In the other lane, a loaded 18-wheeler will travel over the new concrete immediately after it sets, and then sequentially every six hours up to 30 hours. The long-term effects of these early loadings will then be evaluated.
  • Optimizing the mix components for contractors – What effect do low-cementitious content mixes have on long-term performance and constructability of concrete pavements?  Two low cementitious content mixes will be studied to give agencies a better understanding of cost savings. Can these savings be achieved without significantly affecting long-term performance?
  • Compacted concrete pavement for local streets – Compacted concrete pavement is a form of roller compacted concrete that has a standard concrete pavement surface texture. The RCC industry has been successful in Michigan and Kansas constructing CCP pavement on local streets.  This research will determine if the texture that is accomplished is durable in harsh freeze-thaw climates.
  • Recycled aggregates in aggregate base and larger sub-base materials – States continue to look for effective ways to recycle materials into unbound bases. This research will add to MnROAD’s understanding of recycled bases and what seasonal strength values can be used for advanced mechanistic designs–and how they are affected by size/gradation.
  • Maintaining poor pavements– Road owners continually have less funding to maintain their roadway systems. What practices should be used for stabilizing both hot mix asphalt and Portland cement concrete roadways when longer-term repairs cannot be done due to funding levels?
  • Partial depth repair of concrete pavements – Agencies continually seek improved materials and methods for the repair of concrete pavements. In this study, up to 15 innovative concrete pavement repair materials will be evaluated on the concrete panels of the westbound I-94 bypass parallel to the MnROAD mainline.
  • Thin overlays-Experimenting with very thin overlays could provide a real benefit for a lot the roads currently out there. The premise is that with thin overlays, the ride can be smoother and the life of older roads can be extended.

“We don’t often get to reconstruct random roads these days, and when we do, we have much better specifications for low temperature cracking. By the same token, we have to maintain all those older roads built before we had performance grade binders,” said Dave Van Deusen, Materials and Road Research Lab principal engineer. “We will be doing this makeover on an original section of MnROAD built back in the 90’s.”

In one experiment, there is a head-to-head comparison of thin overlays on two sections of road. One section has a thick base and subbase under the asphalt. The other has a heavy asphalt top with very little base.

Van Deusen says if they can get an extra five years of life out of road using thin overlays, he would be pleased. Often, he admits, he is surprised by how long these “short-term” fixes actually last.

Stay up-to-date on construction by signing up for email alerts at mndot.gov/mnroad.  

Taconite byproduct reduces road wear from studded tires

In a recent project, the Alaska Department of Transportation (DOT) used a byproduct of Minnesota’s taconite mining industry for a section of the Alaska Glenn Highway.

The taconite byproduct—Mesabi sand—serves as the aggregate of a sand-seal treatment for a 4,600-foot stretch of the highway just north of Anchorage. Sand seals are an application of a sealer, usually an emulsion, immediately followed by a light covering of a fine aggregate (the sand).

“Our goal was to explore pavement preservation measures that extend pavement life and that also resist studded tire wear,” says Newton Bingham, central region materials engineer with the Alaska DOT. “Studded tires are allowed from mid-September until mid-April, and they cause rapid pavement wear.”

For the project, the Alaska DOT obtained sample pavement cores from the test area in 2014. Researchers then applied sand seals with two different hard aggregates—calcined bauxite and the Mesabi sand—to the surface of the cores to evaluate the effectiveness of each treatment.

Larry Zanko, senior research program manager of the Natural Resources Research Institute (NRRI) at the University of Minnesota Duluth, was the on-site representative for the taconite sand analysis. NRRI focuses on strategies to recover and utilize mineral-resource-based byproducts such as taconite and find potential beneficial end-uses for them.

“Taconite is one of the hardest natural aggregates,” he says. “Minnesota’s taconite mining industry generates tens of millions of tons of byproduct materials every year that could be used as pavement aggregate. Friction aggregates could be a higher-value niche for the industry.”

Testing of the sand-seals showed similar wear resistance for both types of aggregates. “We chose taconite sand since it is available from Minnesota as an industrial byproduct, whereas calcined bauxite sand has to be imported from nations on the Pacific Rim and costs more due to shipping,” Bingham says.

The Alaska DOT reports good performance to date on Glenn Highway and is funding ongoing pavement wear measurement.

NRRI researchers are also studying the use of taconite for other pavement applications. Funded by MnDOT, Zanko’s team developed (and later patented) a taconite compound for repairing pavement cracks and patching potholes (see an article the September 2016 Catalyst). The long-lasting patches reduce maintenance costs and traffic disruption. In continuing work funded by the Minnesota Local Road Research Board, researchers will refine the repair compound and develop and field-test a low-cost mechanized system for pavement and pothole repairs.

Partner States Get First Look at Minnesota Road Experiment

Walking along a half-mile segment of Co. Rd. 8 near Milaca last month, materials engineers from around the country got a first look at a shared test site for pavement preservation.

Nearly 60 one-tenth mile sections of Co. Rd. 8 and nearby Hwy 169 were recently treated with various combinations of fog seals, chip seals, crack seals, scrub seals and microsurfacing and a number of thin overlays. Data will be collected from these experimental test roads for three years and compared with the results of a similar experiment in Alabama, where the same test sections were also built on a low- and high-volume roadway, to see which techniques are the most effective for preserving road life.

“Evaluating pavement performance in both northern and southern climates will provide cost-effective solutions that can be implemented nationwide,” said Ben Worel, MnROAD operations engineer.

Photo of Barry Paye, Wisconsin DOT chief materials engineer; and Tim Clyne, MnDOT Metro District materials engineer.

From left, Barry Paye, Wisconsin DOT chief materials engineer, and Tim Clyne, MnDOT Metro District materials engineer, participate in a discussion about future road research needs. Photo by Shannon Fiecke

Nineteen states, which are co-funding the study through MnDOT’s road research facility (MnROAD), were in town Oct. 26-27 for a joint meeting with the National Center for Asphalt Technology in Auburn, Ala. In addition to touring test sections built this summer near Milaca and at MnROAD’s permanent test track in Albertville, the group reviewed preliminary research results and discussed ideas for new experiments.

MnROAD began two joint research efforts with NCAT last year to advance pavement engineering issues that affect both warm and cold climates. In addition to determining the life-extending benefits of different pavement preservation techniques, the partnership has also built test cells to evaluate which asphalt cracking prediction tests best predict future pavement performance. This second study will help state DOTs improve the quality of asphalt mixes, so roads hold up better through harsh winters, leading to less thermal cracking and fewer potholes.

Click here to learn more about the MnROAD-NCAT partnership.