Nanotechnology Reduces Cold-Weather Cracking in Asphalt Pavements

Adding graphite nanoplatelets (GNP) to asphalt binders and applying the methodology developed in a new MnDOT study could provide a cost-effective approach to reducing cold-weather cracking and increasing the durability of Minnesota pavements.

“This project gives MnDOT a low-cost way to incorporate the latest nanotechnologies into our asphalt mixtures, reducing cold-weather cracking and increasing the durability of Minnesota pavements,” said Shongtao Dai, Research Operations Engineer, MnDOT Office of Materials and Road Research.

What Was Our Goal?

The objective of this project was to develop a cost-effective method to determine the optimum mix design of GNP-reinforced asphalt binders and mixtures. This method would predict the fracture behavior of these materials using a combination of simple laboratory testing and computer modeling.

What Did We Do?

Researchers developed a method for determining the quantity of GNP to add to an asphalt binder to achieve optimal asphalt mixture performance. The method used a computer model to predict the low-temperature fracture behavior of mixtures based on bending beam rheometer (BBR) tests on fine aggregate mixtures. This test applies a load to the center of a thin, rectangular specimen that has been cooled to a low temperature while its edges rest on two elevated supports, and then measures how the specimen bends over time. The results of this test determine the stiffness of materials and their ability to relax the stresses of contraction.

The BBR test is simpler, less expensive and less labor-intensive than the more accurate semicircular bend (SCB) test, which measures fracture resistance—the way cracks in a material form—by loading a semicircular sample from its apex. However, the SCB test can determine the properties of all the particles within a mixture; the BBR test can only evaluate the mechanical properties of coarse aggregates. To obtain the accuracy of the SCB test without the labor and expense, the computer model developed by researchers in this study uses BBR results as inputs to simulate SCB tests and infer the properties of fine aggregates.

2018-02-p1-image
Although simpler and less expensive than a SCB test, a BBR test only evaluates the properties of a mixture’s coarse aggregates.

What Did We Learn?

Researchers validated their computer model by comparing its results with those of  actual SCB tests. They found that the model was able to predict the results of SCB tests for both conventional and GNP-modified mixtures. By performing only a BBR test on the fine aggregates mixture and inputting the results into the computer model, researchers obtained a reasonable prediction of the fracture response of the final asphalt mixtures.

In turn, the model showed that using GNP in asphalt binders can significantly improve the strength and fracture resistance of a mixture compared to mixtures with unmodified asphalt binders. The model can be used as a design tool to determine what percentage of GNP is needed to achieve the necessary tensile strength for a target value of fracture energy.

What’s Next?

Using GNP in asphalt binders, in combination with the methodology developed in this project, could potentially provide MnDOT with a cost-effective approach to improving the cold-weather performance of Minnesota pavements, preventing cracking and increasing pavement durability. MnDOT will continue to evaluate the use of GNP in its asphalt mixes.

This post pertains to Report 2018-02, “A Mechanistic Design Approach for Graphite Nanoplatelet (GNP) Reinforced Asphalt Mixtures for Low-Temperature Applications.” Further GNP research is underway. Find related projects at MnDOT.gov/research.

County GIS Maps Help Road Departments Anticipate Slope Failure

In a recently completed pilot study, researchers developed maps for two Minnesota counties that rank the failure potential of every slope using a geographic information system (GIS)-based model.

“GIS mapping has been applied to very small watersheds. The two counties in this study are huge areas in comparison. We used a physics-based approach that shows engineers where slope failure is likely to occur,” said Omid Mohseni, Senior Water Resources Manager, Barr Engineering Company.

What Was Our Goal?

The goal of this study was to determine if slope failure models could be developed to help counties anticipate where failures may occur. Researchers used publicly available data, research findings and geotechnical theory to develop failure models that could then be mapped with GIS in two topographically dissimilar Minnesota counties. These maps would identify slopes susceptible to failure so that county highway departments could develop preventive strategies for protecting roadways from potential  lope failure or prepare appropriate failure response plans.

What Did We Do?

Researchers began with a literature review of studies about the causes of slope failure, predictive approaches and mapping. They were particularly interested in research related to potential failure mechanisms, algorithms used for predicting failures and slope-failure susceptibility mapping.

Then investigators collected data on known slope failures in Carlton County in eastern Minnesota and Sibley County in south central Minnesota to identify failure-risk factors not found in the literature. Researchers reviewed various statewide data sets, identifying topographic, hydrologic and soils information that could be used in GIS-based modeling. Next, they developed a GIS-based slope-failure model by incorporating the available data with geotechnical theory and probability factors from hydrologic data, and writing computer code to allow the data to be input into mapping software.

Researchers tested the software on known failure sites to refine soil parameter selection and failure models. The refined models and software were then used to identify and map slope failure risks in Carlton and Sibley counties.

2018-05-p2-image
A detailed GIS map of a length of County Highway 210, color-coded to show slope failure susceptibility along the roadway.

What Did We Learn?

After analyzing the literature and the failure and geotechnical data, researchers identified the following key causal factors in slope failure: slope angle, soil type and geology, vegetation, land use and drainage characteristics, soil moisture, and rainfall intensity and duration.

Researchers then developed mapping models for the two counties using three key data sets. The first was data from 3-meter resolution, high-quality lidar, which measures distances with laser range finders and reflected light, available through Minnesota’s Department of Natural Resources website. The team augmented this data with U.S. Department of Agriculture soils survey data, and with National Oceanic and Atmospheric Administration and National Weather Service hydrologic data for precipitation and storm duration information.

Based on research in geotechnical theory, researchers developed algorithms for anticipating failure and built these into the lidar-based topographic mapping model. They also developed input parameters based on the failure factors and established output parameters representing five levels of failure susceptibility: very low, low, moderate, high and very high.

After testing the GIS-based model against a slope along County Highway 210 in Carlton County, researchers confirmed that failure potential correlated well with documented or observed slope failure. The team further validated the model by applying it to several small areas in the adjacent Carver and Sibley counties, finding similarly effective correlation with identifiable failure sites.

Independent geotechnical experts examined the modeling software and further refined geotechnical, soil and hydrologic elements. Finally, the team developed maps of Carlton and Sibley counties that assigned failure susceptibility levels to slopes in the two counties. Viewing maps through the software remains the most useful way to examine slopes, although large-format maps are available.

“If county engineers have higher slopes adjacent to roadways, they can use this basic tool to predict slope failures and then hire a geotechnical consultant to investigate the site.” – Tim Becker, Public Works Director, Sibley County

What’s Next?

With additional funding, mapping could be extended to every county in Minnesota to further refine failure modeling. Maps may also be useful in identifying structures such as roadways, ecological features, transmission lines and pipelines, bridges and culverts that may be threatened by slope failure susceptibility. Potential risks could be used to prioritize slope treatment plans.

This research effort is part of a slope failure risk mitigation strategy that includes the recently released Slope Stabilization Guide for Minnesota Local Government Engineers. Another project, underway at MnDOT, is identifying, mapping and ranking slopes vulnerable to slides that could affect the state highway network. The project

This post pertains to the Local Road Research Board-produced Report 2018-05, “Storm-Induced Slope Failure Susceptibility Mapping,” published January 2018. More information is available on the project page.

Using Mussel Spat Rope to Facilitate Small Fish Passage in Culverts

Low-cost, low-maintenance mussel spat rope can help small fish species navigate through culverts by reducing current velocity and providing protected areas for fish to shelter and rest.  Recent research in New Zealand demonstrated the effectiveness of mussel spat rope—rope with long, dense fibers used in mussel aquaculture— to assist small species fish passing through steep, perched or high-velocity culverts. The successful results from this research led MnDOT to investigate mussel spat rope as a  method to facilitate fish passage in Minnesota’s culverts.

“Minnesota is a headwater state, and we have a responsibility to keep our fish population healthy. Mussel spat rope will be one more effective tool in the toolbox of methods we have to assist fish passage through culverts,” said Petra DeWall, Bridge Waterway Engineer, MnDOT Bridge Office

 What Was Our Goal?

The objective of this project was to determine whether mussel spat rope was an appropriate and effective tool in helping small fish species pass through Minnesota culverts.

What Did We Do?

Investigators conducted a literature review to evaluate previous studies. Then researchers from St. Anthony Falls Laboratory conducted experiments in the laboratory and in the field to investigate the use of mussel spat rope as a fish passage aid.

Hydrodynamic performance. Hydrodynamic performance tests were performed in a 20-inch-wide by 30-foot-long flume fed by water diverted from the Mississippi River into the laboratory. Researchers measured velocity, depth and water surface slope, and sediment accumulation around arrays of ropes. They installed single- and multi-rope configurations and examined many variations of flume flow and depth, recording the rope’s effects on water velocity and turbulence.

In a second experiment, researchers released fine sand into the flume containing two- and four-rope configurations to investigate the rope’s effect on sediment transport. Because the ropes slowed local water velocity, deposits were observed on, between and under the ropes in two different depth tests after one and two hours of sediment feed.

Rope durability, performance and use by fish. Researchers installed mussel spat rope in two Minnesota box culverts: one in the northeast serving a fast current trout stream and one in the southwest serving a slow current prairie stream in critical fish habitat. Double strands of mussel spat rope were installed near a wall in each culvert and examined many times for approximately two years. Each observation included photographic and video recordings of the installations.

2018-13-p1-image
A long interior view to the open end of a large box culvert shows a double strand of mussel spat rope installed in the water along the left wall.

Small fish species’ interaction with the rope. Laboratory investigations of fish behavior with the rope were conducted in a 5-foot-wide by 32-foot-long flume with a raised section representing a box culvert. Two Plexiglas windows allowed viewing. Researchers installed two sets of double-strand ropes along a wall, similar to those in the field sites. Four video cameras tracked motion, recorded overhead views of the flume and captured fish behaviors at the midpoint and ends. Researchers used three species of small fish common to Minnesota: fathead minnow, white sucker and johnny darter. Five fish were released into the test area at a time and allowed to swim for an hour. Their progress and behavior were filmed and analyzed.

What Did We Learn?

Key observations from these investigations follow:

  • Mussel spat rope created small corridors (about 6 inches) of reduced velocity and turbulence along its length, which was sufficient to aid the passage of small fish. Sediment collected in, between and beneath the ropes. The presence of culvert floor sedimentation may assist fish passage.
  • The rope displayed wear over two years in the field, raising a concern about plastic microparticle release into streams. Sediment covered some ropes over time, suggesting a need for maintenance in some culverts. Only a few fish were observed at the field installations.
  • In the laboratory flume, test fish swam near and between doubled rope lengths, apparently taking advantage of the reduced current near and beneath the ropes. While there was variation among species, most fish that swam upstream through the simulated box culvert ended their passage on the rope side, evidence that the rope provided cover and refuge from the current.

What’s Next?

Mussel spat rope will be a low-cost, low-maintenance tool to help small fish pass through culverts. The final report for this study includes guidance for installing the rope. The low-cost method will also be included in an upcoming guide for designing culverts that allow aquatic organism passage.

This post pertains to Report 2018-13, “Use of Mussel Spat Rope for
Fish Passage in Culverts,” published March 2018.

More Saint Paul drivers stopping for pedestrians, thanks to pilot study

A two-year research project underway in the City of St. Paul is already improving pedestrian safety and driver behavior by applying lessons learned from a national award-winning pedestrian traffic study. The city began using the practices last fall with the “Stop for Me” campaign, and driver yield rates have already gone up by 9 percent.

Background

Each year, dozens of Saint Paul pedestrians legally crossing the street are struck by vehicles driven by motorists who fail to stop. In 2015, 40 pedestrians died in Minnesota after being hit by a motor vehicle; 900 were injured. In 2017, there were 192 vehicle-pedestrian crashes in Saint Paul, three of which proved deadly.

Pedestrian fatalities and injuries represent a growing percentage of traffic fatalities and injuries nationwide. For example, pedestrian fatalities comprised 10.9% of all traffic deaths nationwide in 2004, but 14.5% in 2013.

A recent study supported by the National Highway Traffic Safety Administration demonstrated that driver behavior can be changed on a city-wide basis. The introduction of highly-visible pedestrian right-of-way enforcement in Gainesville, Florida increased driver yield rates for pedestrians by 22% to 30%.

Objective

University of Minnesota researchers are charged with reviewing the City of St. Paul’s efforts to improve pedestrian safety and investigate whether a program similar to the one in Gainesville can change driver yielding for pedestrians and speed compliance. The activities in St. Paul are being planned together with city traffic engineers and enforcement officers and will include various educational, engineering and enforcement countermeasures and media campaigns.

Last fall, St. Paul began the “Stop for Me” campaign, which enforces pedestrian laws, increases driver and pedestrian education and works towards enhanced signage and other changes to crosswalks around the city.

A group of people holding signs with traffic safety messages
Stop For Me is a campaign to improve safety for people who use St. Paul’s sidewalks and cross its  streets.

On June 25, the St. Paul Police Department began the second phase of the campaign by ticketing drivers who fail to stop for pedestrians at crosswalks.

Additionally, police officers are ticketing drivers for “endangerment” if they pass a vehicle that is stopped for a pedestrian at a crosswalk. This citation leads to a mandatory court appearance for the driver.

Weekly stopping percentages can be viewed at eight intersections across the city from now until the end of fall.

Watch for new developments on this project (expected end date of August 2019) here.  Another MnDOT study is looking at pedestrian traffic safety in rural and tribal communities. Other Minnesota research on pedestrian travel can be found at MnDOT.gov/research.

 

 

Refined ROI Methodology Shows Added Benefits of MnPASS Lanes

Researchers have developed a more comprehensive, standardized method for evaluating and selecting MnPASS managed lane projects. The new methodology uses a return on investment (ROI) and benefit–cost analysis framework that includes a more extensive set of factors, variables and perspectives than earlier methods. After applying the broader range of impact categories from the new methodology to an earlier study of a MnPASS corridor, researchers found that the MnPASS projects provide more benefits than previously reported.

In the past, MNDOT used a series of evaluation methods—cost estimation, performance measures and travel demand forecasting—to select new MnPASS corridors. While the recommendations and results from these assessments were adequate, each evaluation used a different set of objectives and assumptions. The range of benefit–cost factors in earlier evaluations was also limited to travel time savings, operating costs and crashes.

2017-37-p2-image
An overhead sign above a MnPASS express lane explains that drivers must have MnPASS or two or more occupants in a vehicle to use the lane during peak travel time of 6 a.m. to 10 a.m., Monday through Friday.

“Our previous corridor studies each had different benefit–cost elements, making direct comparisons difficult. This project makes it possible to quantify the transit, environment and travel time reliability benefits that we knew were there all along,” John Wilson, Economic Policy Analyst, MnDOT Office of Transportation System Management

MnDOT needed a more thorough and consistent benefit–cost analysis methodology to help decision-makers better assess MnPASS project alternatives; compare potential MnPASS corridors; and communicate why MnPASS is a financially effective, long-term strategy for addressing mobility and congestion issues.

What Was Our Goal?

The goal of this project was to develop a refined, standardized methodology to more accurately assess the ROI of MnPASS programs and projects. A refined assessment framework would include a broader range of financial and performance measures, allowing MnDOT to more thoroughly evaluate MnPASS investments.

What Did We Do?

Using ROI as the central framework, the research team set out to generate a more comprehensive method for estimating benefits and costs. To begin, team members identified limitations in the existing benefit–cost analysis methodology and developed a list of factors to include in the refinement process. Then they interviewed stakeholders from various agencies to better understand MnPASS planning and operations needs, as well as the data required to support the research and system benefits and costs.

Next, they began to develop the enhanced framework by defining economic, environmental and social ROI categories for MnPASS investments, and mapping the relationship between these categories and their associated benefits and costs. Benefit– cost analysis methods then were used to build the refined framework and to estimate benefit–cost ratios for projects. Finally, researchers applied the new framework to an earlier benefit–cost analysis of the Interstate 35 West (I-35W) North Managed Lanes project to compare the results of the new framework with the results from the earlier analysis.

What Did We Learn?

Researchers used additional benefit factors such as transit use, travel time reliability, emissions and noise to refine the ROI calculation methods. When they applied the new ROI framework to the I-35W project, they found that the MnPASS benefit–cost ratio significantly improves with the inclusion of transit and travel time reliability benefits.

“Benefit–cost analysis had not changed for a long time; we had looked at travel time, vehicle operating costs and safety. Now we have added travel time reliability, which is important because we are moving people, not just vehicles.”—Paul Morris, Senior Associate, SRF Consulting Group, Inc.

What’s Next?

The results from the comparative analysis yielded a notably higher benefit–cost ratio of 3.40 for the test corridor compared to a benefit–cost ratio of 2.11 in the original study, indicating that MnPASS projects have more positive effects than previously identified. Based on these findings, MnDOT will revise its benefit–cost guidance for evaluating MnPASS investments.

The research team was also able to measure the impacts of specific categories on the overall outcome of the calculations. Team members found that while the measures for reliability and transit impacts produced a meaningful change in the overall benefits, those for emergency response, emissions and noise impacts were very small relative to overall project costs. MnDOT will consider these findings in establishing updated procedures.

This post pertains to Report 2017-37, “Refining Return on Investment Methodology/Tool for MnPASS,” published October 2017. Other research initiatives to improve MnPASS operations can be found by searching “MnPASS” on MNDOT Research Services’ project pages.

 

Using a National Database to Develop Performance Metrics for Local Pavement Markings

Pavement marking performance metrics from a new study will help Minnesota local agencies save time and money by choosing longer-lasting pavement marking products.

Researchers developed pavement marking performance metrics for Minnesota local agencies to use as a guide to make better pavement marking product decisions. The metrics were developed based on an analysis of survey data collected from Minnesota local agencies and MnDOT pavement marking data mined from the National Transportation Product Evaluation Program (NTPEP). Findings showed differences in product performance with regard to retroreflectivity and service life, which were impacted by variables such as road surface type, year of application, traffic volume and type of pavement marking.

“There would be great potential savings in using pavement marking products with a longer service life. Mining NTPEP data to analyze product performance has not been done before and should contribute substantially to this goal,” said Omar Smadi, Director, Iowa State University Center for Transportation Research and Education.

What Was Our Goal?

The goal of this research was to develop pavement marking performance metrics for Minnesota local agencies to use as a guide when choosing the most durable and cost-effective products. Researchers developed the pavement marking performance metrics, specifically for retroreflectivity and service life, by analyzing existing MnDOT data mined from NTPEP. They also used the findings to make recommendations for future pavement marking research to support local agency needs.

What Did We Do?

Researchers designed and conducted a survey to assess pavement marking products used by local agencies in the state. Then they extracted 2010 and 2013 MnDOT pavement marking data from NTPEP to analyze the performance of products that survey respondents identified as commonly used.

NTPEP data included products tested at two different sites and applied on different road surfaces. Researchers analyzed performance with regard to retroreflectivity and deterioration or longevity of the materials under various conditions, such as road surface type, year of application, traffic volume and type of pavement marking. Based on results from the analysis, researchers developed performance metrics for Minnesota local agencies to use as a guide for choosing particular pavement marking product types.

What Did We Learn?

From the survey results, researchers learned that the majority of Minnesota local agencies use either latex or epoxy as their primary pavement marking material. However, epoxy and tape outperformed latex at all levels of conditions and provided a service life of three years or more.

A few survey respondents also reported grooving as a method that seemed to extend the service life of latex paint markings. Researchers were unable to investigate the impact of grooving, however, since MnDOT grooving data was not accessible.

2017-43-p2-image
Grooving may extend the service life of pavement marking materials.

From the NTPEP data analysis, researchers concluded the following:

  • White markings had significantly higher initial retroreflectivity and slower deterioration than yellow markings.
  • Road surface type does not significantly impact retroreflectivity throughout its service life.
  • Epoxy has higher retroreflectivity than latex materials.
  • As expected, markings on wheel zones deteriorated faster, reducing retroreflectivity over time.
  • Deterioration values of markings varied among different test sites, which may be attributed to differences in average annual daily traffic (AADT) values (10,000 in 2010 versus 37,000 in 2013) or installation practices.

“The findings from this research will be beneficial for Minnesota local agencies in determining which pavement marking materials are most effective,” said Kate Miner, then-Scott County Traffic Manager.

What’s Next?

Although the product performance metrics data will help Minnesota local agencies make better pavement marking product decisions in less time, researchers recommend developing a guidebook to make the information more usable. Adding grooving data to the guidebook would also be beneficial to investigate the potential impact grooving provides in extending the service life of pavement markings.

Researchers also recommend testing the same products evaluated in this research on low-volume local roads and on challenging surface types. MnDOT NTPEP data only included products that were tested on high-volume freeways.

This blog pertains to the Local Road Research Board-produced Report 2017-43, “Minnesota Local Agency Pavement Marking: Mining Existing Data,” published November 2017. A related project has developed a spreadsheet tool to help local agencies prioritize pavement markings on low-volume roads.

Design Spreadsheet Offers Alternatives to Protect Pavements from Frost Damage

Researchers have developed a simple design tool for determining the amount of frost-free materials needed for a specific site’s subgrade to prevent frost and freeze-thaw damage to pavements.

“This tool will help us optimize construction to provide the best pavement,” said Steve Henrichs, Assistant Pavement Design Engineer, MnDOT Office of Materials and Road Research

Since 1995, MnDOT has required the use of frost-free materials (FFM) in subgrade depths of 30 to 36 inches for asphalt pavements, based on traffic load requirements. It is not clear that such FFM requirements are effective. In some areas, 30 inches may be excessive and, therefore, unnecessarily expensive; in others, 36 inches of FFM may not be enough, leading to costly pavement failure and repair. MnDOT needed a research-based pavement subgrade design procedure for resisting frost damage in pavements.

“Frost protection has not been studied in depth recently. This research used inputs based on soil type, location and expected frost depth, and didn’t require advanced modeling or expensive laboratory testing,” said Matthew Oman, Principal Engineer, Braun Intertec Corp.

What Was Our Goal?

The goal of this project was to develop a procedure for optimizing subsurface materials and thicknesses based on existing subgrade soils and geographic areas in Minnesota in order to resist pavement damage from frost action.

What Did We Do?

Researchers first reviewed existing literature on frost action and frost susceptibility. They synthesized national and international research and looked at practices and standards for mitigating frost action in states and countries with climates similar to Minnesota’s. Then they reviewed MnDOT’s current and historical policies and practices.

2018-06-p1-image
Researchers reviewed charts and other resources on cold temperatures and structural insulation needs, like this map from the National Oceanic and Atmospheric Administration.

The central effort in this research was to examine existing pavements in Minnesota to characterize pavement performance and winter profiles. Researchers and the Technical Advisory Panel selected 72 pavement sites for study based on soil types (such as glacial till, clay, silt, sand and peat); pavement types (including concrete, asphalt and composite); subsurface materials and thickness; and weather conditions. The team evaluated construction logs, project plans, management data and subsurface investigations, and they augmented Minnesota-specific data with performance and soil data from the Federal Highway Administration’s (FHWA’s) Long-Term Pavement Performance (LTPP) program. Researchers created winter pavement profiles of most of the sites and compared them with roughness and ride quality data collected the previous summer.

Finally, the team analyzed performance trends and design and construction details to assess the effect of frost heave on ride quality. Using the findings from this effort, the team built a design tool for determining what pavement structures require of subgrades to resist environmental effects based on project location, projected frost depth and soil type.

What Did We Learn?

The initial evaluation did not produce strong correlations between winter ride quality and factors like FFM depth, grading soil depth and region. Winter ride quality measurements were poorer than summer measurements, but the role of FFMs remained unclear. Insufficient data, outliers and other questionable information were culled from the records, which were then amplified with data from other pertinent historical sources. Results from this effort suggested that FFM depth may improve pavement performance by incrementally reducing ride deterioration, particularly at depths of 25 inches or greater.

Review of relevant LTPP data established that shallower FFM depths and greater silt content in subgrades correlate with poor pavement ride quality. Silty soils, which have low permeability and produce high capillary effects, have long been considered susceptible to frost damage.

Researchers avoided thermodynamic modeling and analysis—and kept the design tool simple—by selecting subgrade silt content as a proxy for frost susceptibility. The spreadsheet tool uses project location (latitude and longitude), predicted frost depth and subgrade soil silt content as the key factors in frost susceptibility of pavements. The tool recommends frost treatment ranges from about 30 percent of predicted frost depth for soils with zero silt to over 80 percent of predicted frost depth for soils with 100 percent silt. The spreadsheet requires limited laboratory testing of subgrade soils, is simple and inexpensive to implement, and produces results similar enough to MnDOT’s practices that they will not require dramatic change in construction needs.

What’s Next?

Researchers produced four spreadsheets, each employing a different combination of frost depth prediction and soil type characterization. Once MnDOT selects its preferred spreadsheet and determines if additional subsurface tests should be included as inputs, pilot implementation will begin. Additional study to enhance the tool could include investigating MnROAD cells further, collecting more winter ride quality data, developing uniform frost depth prediction methods and tracking more information from new construction.

This post pertains to Report 2018-06, “Designing Base and Subbase to Resist Environmental Effects on Pavements,” published February 2018. The full report can be accessed at mndot.gov/research/reports/2018/201806.pdf.

New Software Models MnPASS HOT Lane Changes

Until recently, Minnesota drivers could only enter or exit high-occupancy toll (HOT) lanes via select ramps and access points. But MnDOT has changed most of its MnPASS express lanes to an open-access system to allow more movement between general purpose and high-occupancy toll (HOT) lanes.

Although MnDOT prefers this open access system, there could safety concerns for allowing lane changes in certain locations, especially if traffic patterns change. A new design tool developed by MnDOT-sponsored research enables traffic engineers to evaluate existing or prospective HOT corridors and determine the impact of open or closed access. When data shows changes in traffic patterns and congestion, the software also allows technicians to model and design changes in MnPASS access to improve drive mobility and safety.

“Nothing like this has been developed anywhere else. There is a lot of debate around the country about high-occupancy designs. This tool helps us develop designs and monitor existing corridors,” said Brian Kary, Director of Traffic Operations, MnDOT Regional Transportation Management Center.

Background

In Minnesota, high-occupancy toll (HOT) lanes are used by buses, carpools and motorists with transponders that trigger payments for rush hour use. During rush hour, fees increase as congestion increases; at other times, the lanes are free for all users.

MnDOT research in 2014 concluded that both closed and open HOT lane configurations effectively and safely improve traffic capacity. But researchers anticipated that roadway sections on an HOT lane corridor may eventually experience safety and mobility problems if toll prices are lowered or traffic volume increases. During heavy traffic, driving speeds often vary dramatically between HOT and general purpose lanes. Drivers moving into MnPASS lanes may force other drivers to brake suddenly to avoid collisions and trigger shockwaves of slowed or stopped traffic behind them. MnDOT prefers open-access designs for the increased options they offer road users, but it was not clear how best to manage access to reduce the incidence of shockwaves and the safety and mobility problems they create.

A section of a MnPASS express lane.
MnDOT has changed most of its MnPASS lane markings from double solid lines to skipped double lines to allow more open movement between general purpose and HOT lanes. A new software tool allows RTMC engineers to reassess MnPASS access to respond to changing traffic patterns.

The goal of this research implementation effort was to develop a software tool that the Regional Transportation Management Center (RTMC) could use to assess corridor operations and design. Based on design recommendations from earlier research, the tool would allow RTMC users to predict the safety and mobility impacts of a change from open to closed HOT lanes, and estimate where in the corridor such changes could be implemented safely and effectively.

What Did We Implement?

This effort leveraged findings from three previous MnDOT studies. Models and methods from “Evaluation of the Effect of MnPASS Lane Design on Mobility and Safety” (Report 2014-23) were used for the architecture of this new system. Investigators drew on “Expanding and Streamlining of RTMC Freeway Network Performance Reporting Methodologies and Tools” (Report 2014-05) to implement methods for retrieving historical data from RTMC’s system, cleaning the data and integrating it into the new software package. The project team then incorporated data from “Safety Impacts of the I- 5W Improvements Done Under Minnesota’s Urban Partnership Agreement (UPA) Project” (Report 2017-22) to develop and calibrate the new tool for estimating traffic impacts and shockwaves. A car-following and lane-changing model developed in a 2013 University of Minnesota study provided effective methods for ensuring realistic vehicle modeling and shockwave generation.

How Did We Do It?

Investigators developed this system with links to MnDOT’s database to draw on historical data to identify patterns of traffic demand over time and generate predictions of points in the MnPASS lanes at which shifts from open- to closed-access HOT lanes will offer the most benefit. The program’s code integrates the various models, data sets and tools mentioned above into software that integrates smoothly with the RTMC’s current software and capabilities for collecting speed and volume data, developing interfaces to model impacts of changing open designs at certain points in the freeway corridor to closed designs. The tool includes a module for access design, a module for generating data and a web application.

“This tool is calibrated for the Twin Cities. It takes real-time data and diagrams each location separately for lane changes and reaction time. It took theoretical ideas and made them usable,” said John Hourdos, Director, Minnesota Traffic Observatory, University of Minnesota.

What Was the Impact?

After receiving training in using the new software, RTMC engineers have embraced the MnPASS design tool to regularly report MnPASS performance to the Federal Highway Administration and to generate quarterly and annual analyses and recommendations for changing specific locations from open access to closed access. Closing requires restriping and changing signage—operations that allow MnDOT to respond quickly and easily to shifts in traffic patterns and potential mobility and safety impacts.

The project also offers data for the broader transportation community in which experts debate the relative merits of open- and closed-access HOT designs. With MnPASS, MnDOT has emerged as a leader in open design; this software allows sophisticated modeling of design impacts for the national traffic operations community.

What’s Next?

The MnPASS design tool effectively monitors corridor behavior and design changes. Improvements may yet be made to allow data calibration and validation for slower traffic speeds that represent mobility breakdowns, and to refine aspects of car-following and shockwave models. Increased density scenarios can also be further improved to better accommodate traffic density increases in regular lanes alongside HOT lanes.

In its current form, the tool will be used to analyze open- and closed-access designs on the Interstate 394 corridor to determine the best locations for changes to MnPASS lanes, and positions MnDOT and the RTMC to respond to traffic demand changes in the future.

This post pertains to Report 2018-11, “A Tool for Designing MnPASS
Access Spacing,” published March 2018. The full report can be accessed at
mndot.gov/research/reports/2018/201811.pdf.

 

Research Provides Foundation for Chloride Mitigation Efforts

The accumulation of chloride in our waters has become a widespread concern. In a recent study sponsored by MnDOT and the Local Road Research Board, researchers measured the transport and accumulation of chloride from road deicers in a metro-area watershed. The findings revealed a greater infiltration of chlorides into soil and subsurface waters than previously assumed.

“The results of this research provide us with knowledge we did not
have before,” says William Herb,a research associate with the University of Minnesota’s St. Anthony Falls Laboratory and the study’s principal investigator. “It will help investigators and policymakers explore ways to capture chlorides and mitigate their damaging environmental effects.”

Road salt (sodium chloride) is used in most states that experience snow and ice, with growing impact. For example, chloride levels in some lakes and streams in the Minneapolis–Saint Paul metro area exceed state and federal water quality
standards, and a recent study showed that levels in more than one-quarter of shallow groundwater wells in the metro were above drinking-water taste standards.

“This is a real concern because even in low concentrations, chloride can be lethal to sensitive plants and some aquatic species, and many of our lakes, wetlands, and streams show acute or chronic levels of chloride,” Herb says.

To learn how chlorides from road salt deicers are transported in urban watersheds, researchers installed field instruments at eight sites in a Roseville watershed. They monitored water and chloride levels nearly continuously over three winter seasons; this included runoff directly from sources (roads and parking lots), transport in ditches and sewer networks, and retention in and release from detention ponds and wetlands. Computer modeling was used to generalize results.

2017-50-p1-image
This drain along State Highway 36 was one of the roadway runoff discharge sources used in the study.

Overall, the team observed substantial chloride retention via infiltration to soils and groundwater. For example, monitoring the runoff from a vegetated highway ditch showed that more than 95 percent of the chloride applied to the highway infiltrated
from the ditch into the soil, and less than 5 percent was exported from the site in surface runoff. “Interestingly, substantial chloride export from the ditch was observed in November rainfall runoff prior to application of any new road salt for the upcoming winter, suggesting long-term storage in soils and groundwater in and near the ditch,” Herb says.

Researchers also found that winter rain-on-snow events and the first major
prolonged thaw each season moved surface chlorides most effectively into the watershed.

The research team then used the data and modeling to examine potential strategies for reducing or mitigating the spread of chloride, including capturing low flows, seasonal runoff capture, and capture based on salinity.

Wayne Sandberg, deputy director of the Washington County Department of Public Works, chaired the study’s technical advisory panel. “Based on this research, we now know that deicer chemicals are staying in the soil and moving in the watersheds, and this should change how we manage ice and snow control,” he says. “The next questions are what can we do with that knowledge and what changes can we make.”

This article originally appeared in CTSs Catalyst Newsletter, March 2018 and pertains to Technical Summary 2017-50TS. The full report, “Study of De-icing Salt Accumulation and Transport Through a Watershed” 2017-50, published December 2017 can be accessed at mndot.gov/research/reports/2017/201750.pdf.

Smartphone prototype app warns drivers of high-risk curves

Lane-departure crashes on curves make up a significant portion of fatal crashes on rural Minnesota roads. To improve safety, solutions are needed to help drivers identify upcoming curves and inform them of a safe speed for navigating the curve.

“Traditionally there are two ways to do this: with either static signage or with dynamic warning signs,” says Brian Davis, a research fellow in the U of M’s Department of Mechanical Engineering. “However, while signing curves can help, static signage is often disregarded by drivers, and it is not required for roads with low average daily traffic. Dynamic speed signs are very costly, which can be difficult to justify, especially for rural roads with low traffic volumes.”

In a recent project led by Davis on behalf of MnDOT and the Minnesota Local Road Research Board, researchers developed a method of achieving dynamic curve warnings while avoiding costly infrastructure-based solutions. To do so, they used in-vehicle technology to display dynamic curve-speed warnings to the driver based on the driver’s real-time behavior and position relative to the curve. The system uses a smartphone app located in the vehicle to provide the driver with visual and auditory warnings when approaching a potentially hazardous curve at an unsafe speed.

“Highway curves [make up] 19 percent of the total mileage of the paved St. Louis County highway system, yet these curves account for 47 percent of all severe road departure crashes,” says Victor Lund, traffic engineer with St. Louis County. “In-vehicle warnings will be a critical strategy to reduce these crashes.”

To begin their study, researchers designed and tested prototype visual and auditory warning designs to ensure they were non-distracting and effective. This portion of the study included decisions about the best way to visually display the warnings and how and when audio messages should be used. “To create the optimal user experience, we looked at everything from how to order the audio information and when the message should play to the best length for the warning message,” says Nichole Morris, director of the U’s HumanFIRST Lab and co-investigator of the study.

Next, a controlled field test was conducted to determine whether the system helped reduce curve speeds, pinpoint the best timing for the warnings in relation to the curves, and gather user feedback about the system’s usefulness and trustworthiness. The study was conducted with 24 drivers using the test track at the Minnesota Highway Safety and Research Center in St. Cloud, Minnesota. The selected course allowed drivers to get up to highway speeds and then travel through curves of different radii, enabling researchers to learn how sensitive drivers are to the position of the warnings.

Based on the study results, the system shows both feasibility and promise. “Our in-vehicle dynamic curve warning system was well-liked and trusted by the participants,” Davis says. “We saw an 8 to 10 percent decrease in curve speed when participants were using the system.”

The project was funded by MnDOT and the Minnesota Local Road Research Board.

Minnesota transportation research blog