Partner States Get First Look at Minnesota Road Experiment

Walking along a half-mile segment of Co. Rd. 8 near Milaca last month, materials engineers from around the country got a first look at a shared test site for pavement preservation.

Nearly 60 one-tenth mile sections of Co. Rd. 8 and nearby Hwy 169 were recently treated with various combinations of fog seals, chip seals, crack seals, scrub seals and microsurfacing and a number of thin overlays. Data will be collected from these experimental test roads for three years and compared with the results of a similar experiment in Alabama, where the same test sections were also built on a low- and high-volume roadway, to see which techniques are the most effective for preserving road life.

“Evaluating pavement performance in both northern and southern climates will provide cost-effective solutions that can be implemented nationwide,” said Ben Worel, MnROAD operations engineer.

Photo of Barry Paye, Wisconsin DOT chief materials engineer; and Tim Clyne, MnDOT Metro District materials engineer.

From left, Barry Paye, Wisconsin DOT chief materials engineer, and Tim Clyne, MnDOT Metro District materials engineer, participate in a discussion about future road research needs. Photo by Shannon Fiecke

Nineteen states, which are co-funding the study through MnDOT’s road research facility (MnROAD), were in town Oct. 26-27 for a joint meeting with the National Center for Asphalt Technology in Auburn, Ala. In addition to touring test sections built this summer near Milaca and at MnROAD’s permanent test track in Albertville, the group reviewed preliminary research results and discussed ideas for new experiments.

MnROAD began two joint research efforts with NCAT last year to advance pavement engineering issues that affect both warm and cold climates. In addition to determining the life-extending benefits of different pavement preservation techniques, the partnership has also built test cells to evaluate which asphalt cracking prediction tests best predict future pavement performance. This second study will help state DOTs improve the quality of asphalt mixes, so roads hold up better through harsh winters, leading to less thermal cracking and fewer potholes.

Click here to learn more about the MnROAD-NCAT partnership.

Minnesota Partners with Neighboring States to Improve Traveler Information

Interstates 90 and 94 between Wisconsin and the state of Washington are major corridors for commercial and recreational travel. Extreme winter weather conditions, prevalent in the northern states within this corridor, pose significant operational and travel-related challenges. Recognizing the value of coordinated, cross-border collaboration for ITS deployment, Minnesota spearheaded the development of a transportation pooled fund study, called North/West Passage, in 2003.

The eight states – Minnesota, Idaho, Montana, North Dakota, South Dakota, Washington, Wisconsin and Wyoming – involved in the study are predominantly rural and face similar transportation issues related to traffic management, traveler information and commercial vehicle operations. They developed an ITS Integrated Work Plan and have completed nine work plans containing 50 projects.

North West Passage Traveler Information Website (roadstosafediscovery.com), the group’s hallmark project, offers travel information for I-90 and I-94 in a single interactive map. In addition to checking weather conditions, road closures and temporary truck restrictions, motorists can find the location of gas stops, rest areas and parks.

The states are currently evaluating a program that allows citizens to report driving conditions so that they can be included in traveler information reporting (a pilot is underway with MnDOT’s 511 system), and another project is comparing winter maintenance practices between corridor states.

“The biggest benefit of this pooled fund study is that it allows MnDOT to see what its neighbors are doing when developing solutions for operational issues. This awareness really helps us make better decisions about our projects at the state level,” said Cory Johnson, Traffic Research Director, MnDOT Office of Traffic, Safety and Technology.

Other major accomplishments:

  • North and South Dakota 511 callers can select to receive information on Minnesota’s highways.
  • An online portal for coordination of traffic management center operations, including guidelines, maps and contact information to manage major events across states.
  • Development of one proposal to hire a contractor to perform work in two states.
A map of possible routes from Milwaukee going west past North Dakota, with boxes the user can check to show Road Work, Weather Alerts, Road Conditions, and other features of the route.
Eight states maintain the North West Passage Traveler Information Website, which shows real-time travel information between Wisconsin and Washington along Interstates 90 and 94. A mobile app is under development.

For more than 30 years, the Federal Highway Administration’s (FHWA’s) Transportation Pooled Fund (TPF) Program has been providing state departments of transportation and other organizations the opportunity to collaborate in solving transportation-related problems. The TPF Program is focused on leveraging limited funds, avoiding duplication of effort, undertaking large-scale projects and achieving broader dissemination of results on issues of regional and national interest.

Knowing While Mowing: GPS Keeps Maintenance Workers Out Of the Weeds

As temperatures fall and days get shorter, MnDOT Metro District maintenance workers are wrapping up a season of mowing grass along roadsides and in medians that they hope will prove a little more efficient than in the past.

Thanks to a research project that installed GPS devices in tractor cabs, operators have a better sense of exactly which areas they need to mow and which areas should be left alone. Five Metro District tractors were tested in 2015. This year, more than 40 tractors were fitted with the automated vehicle location (AVL) technology, which includes a GPS antenna, an on-board central processing unit (CPU) and an in-cab screen with a user interface.

Trisha Stefanski, Metro District asset management engineer, expects one of the biggest benefits of the project to be a reduction in herbicide use. Maintenance crews use herbicide to control the spread of noxious weeds that sometimes get spread during mowing operations. Mapping exactly where noxious weeds are, and providing that information to operators on a real-time, in-cab screen and user interface helps them mow around those areas.

“We’re really hoping it will reduce the amount of herbicide that we’re putting on our roadways by 50 percent,” Stefanski said. “We’re not certain that will be the number, but that’s what we’re hoping for. We think just not mowing those areas will not spread as many noxious weeds and so we don’t have to apply as much herbicide.”

Metro District operators, such as Jesse Lopez, give the AVL technology rave reviews.

“Basically you can see what you shouldn’t mow and what you should mow. So, it makes it easy for me. It’s just like playing a game,” Lopez said. “This actually helps me to optimize what my job is. I know exactly where I’m at and where I’m going. I think everyone should use it – absolutely everybody who is in a mowing situation or a plowing situation.”

In addition, the AVL technology helps maintenance supervisors keep tabs on exactly where their operators are in real time. It also helps supervisors complete reports by automatically providing the geographic areas where mowing has been completed.

Stefanski says the project has gone really well, and she hopes collecting more data over another mowing season will show real savings on herbicide use. In the meantime, she is thinking of other ways AVL technology could be applied to maintenance operations.

“What I really like about the project is that we are taking something used in a lot snow plows and a lot of other technologies – cars, other things, maybe UPS uses them – and we’re putting it into maintenance operations,” Stefanski said. “Having it for mowing, we can also use it for smooth pavements. We can also use it for other things in mowing operations.”

CTS Research Conference: a day of discovery and innovation

Have you registered to attend the annual CTS Transportation Research Conference on November 3?

The one-day event, held at The Commons Hotel on the U of M campus, will highlight new learning, emerging ideas, and the latest innovations in transportation. Sessions will also explore implementation efforts and engagement activities.

In the opening session, “Creating Sustainable, Livable, Forward-Compatible Cities for Economic Resilience,” author Gabe Klein will explore the innovations taking place in cities and how government, business, and nonprofit leaders can utilize this wave of change to shape a quality of life that is improved and not compromised.

Following his presentation, the following panel of experts will share perspectives on the implications for the future of transportation systems in Minnesota cities:

  • Mayor Ardell Brede, City of Rochester
  • Mayor Chris Coleman, City of St. Paul
  • Anu Ramaswami, Professor, Humphrey School of Public Affairs, University of Minnesota
  • Mayor Betsy Hodges, City of Minneapolis (invited)

In the luncheon presentation, “How to Promote and Prepare for Automated Driving,” Professor Byrant Walker Smith will present steps that governments can take now to encourage the development, deployment, and use of automated driving systems.

Complete program details and registration information is available on the CTS website. Please plan to join us for a day of discovery and innovation!

Drone Project Earns State Government Innovation Award

The MnDOT Office of Aeronautics and Aviation was recognized last month for the drone research project that also involved the Office of Bridge and Structures and MnDOT Research Services.

The Humphrey School of Public Affairs, in partnership with the Bush Foundation, presented a State Government Innovation Award to recognize great work and to encourage an environment that allows agencies to deliver better government services to Minnesotans through creativity, collaboration and efficiency.

The project, titled Unmanned Aircraft Systems (UAV) Bridge Inspection Demonstration Project, found that using drones for bridge inspections improves safety, lessens traffic disruption and reduces work time. For one type of bridge, inspection time shrank from eight days to five.

In the video, Jennifer Zink, MnDOT state bridge inspection engineer, explains the project, along with Tara Kalar, MnDOT associate legal counsel; Cassandra Isackson, director of MnDOT Aeronautics; and Bruce Holdhusen, MnDOT Research program engineer.

The initial drone project drew significant media coverage and a lot of attention from other state departments of transportation from all over the country.

A second phase of the project was approved year and is currently underway. A third phase is already in the planning stages.

More information

 

New video: Finding solutions to save lives

See how researchers at the Roadway Safety Institute (RSI), led by the University of Minnesota, are working to reduce crashes and save lives on our nation’s roadways in a new video.

The video features RSI director Max Donath and researchers from across the region who are working on a breadth of projects, ranging from reducing crashes at rail grade crossings to improving road safety on tribal lands. The video also highlights a few of RSI’s education efforts, including a museum exhibit designed to introduce preteens to safety concepts.

RSI was established as the Region 5 University Transportation Center in 2013 and is housed at CTS. MnDOT is a key partner for RSI, funding a variety of safety-focused projects by RSI researchers.

For more information about RSI, visit the Institute’s website.

Work Zone Safety- How to Make Construction Sites Safer

If you have spent any time driving on Minnesota roads and highways lately, you know that road construction work zones are all over the place. They can contribute to traffic delays and require vigilance to ensure the safety of both drivers and workers.

MnDOT and the Minnesota Local Road Research Board (LRRB) are doing their best to make  work zones more efficient and safer for crew members and the traveling public alike.

Here’s a roundup of some of the great work zone safety projects under way or recently completed:

New – Temporary Traffic Control for Low Volume Roads

FlyerPicCity and county workers sometimes have trouble determining how to select the appropriate work zone for low traffic roads. The Minnesota Local Road Research Board (LRRB) recently published two supplemental guidebooks to help local agencies identify the appropriate work zone layout for low-volume urban and rural roadways based on the maintenance activity. The guides are intended to supplement MnDOT’s 2014 Temporary Traffic Control Zone Layouts Field Manual.The LRRB has also requested changes to the field manual  for low-volume roadways in a letter to the MN Committee on Uniform Traffic Control Devices.

Smart Work Zone Speed Notification 

MnDOT is testing a system on I-94 this summer that it hopes will reduce work zone crashes by raising driver awareness of upcoming congestion. Systems with the same purpose have been tested in rural work zones, but mostly applied to locations where backups were predictable.

The Smart Work Zone Speed Notification System will take a different approach, informing drivers of the speed ahead, as opposed to a variable speed limit system tested previously on I-94, which also detected congestion but provided advisory speeds to drivers. It is envisioned that the new system will have greater success in reducing rear-end crashes on large, urban freeway work zones.

The new system is being tested and evaluated on I-94, east of downtown St. Paul, during work to replace and repair the roadway.

NEW –  Speed Cameras in Work Zones

OLYMPUS DIGITAL CAMERAPolice enforcement and speed limits are the main method of reducing the speed of drivers in Minnesota work zones. While this practice is effective, reducing speeds by approximately 10 to 15 mph, it is not practical to staff every work zone with law enforcement. As an alternative, some states are using automated speed enforcement cameras in work zones.

Automated speed enforcement cameras have been shown to reduce speeds in work zones, but such research did not evaluate how the cameras impact driver attention.

This study explored driver awareness and found that automated speed enforcement cameras in work zones are not a source of driver distraction. It also revealed differences in work zone driving behavior: Older drivers were least able to follow another vehicle closely, while younger drivers were least likely to monitor their speed carefully.

NEW –  Reducing Work Zone Delay by Improving Traffic Models

2016-12 ImageAccurate estimation of delays caused by lane closures on highways is critical important to effectively manage traffic flows around work zones.

A recent study, completed in March 2016, improves methods for estimating reduced traffic capacity and diversion rates for highway work zones.

Researchers analyzed traffic patterns from past work zones in the Twin Cities metro area and were able to develop a tool that can estimate estimate traffic diversion for a given work zone.

The next step is an implementation project to test and streamline the software.

Work Zone Intrusion Reporting

TRS1506 ImageWork zone intrusions — when traveling vehicles enter the work space of a work zone — are a clear safety concern even if they do not result in an accident, and they may indicate locations where future accidents are likely.

MnDOT was interested in learning how other state DOTs collect work zone intrusion data, both the technology used for data collection and the specific information they collect.

This Transportation Research Synthesis (TRS), completed in June 2015, surveyed state DOTs and conducted follow-up interviews with states that collect work zone intrusion data. The survey found that the relatively small number of states that do collect intrusion data typically do so via paper or electronic form.

As a result of the TRS, a recently funded research project proposes to develop a simple method to track and gather information on work zone intrusions. The aim of this process will be to produce a reporting interface (in the same vein as the Crash Report Usability And Design Project for the Department of Public Safety) that gathers essential information without being onerous to work crews.

Auto Flaggers: Keeping Crews Safe, Saving Manpower

Training was provided to introduce MnDOT maintenance workers to Automatic Flagger Assistance devices, which can improve safety in work zones by allowing flaggers to provide traffic guidance without having to be in the flow of traffic.

Using a remote control, a single worker can easily operate two AFADs simultaneously, freeing up personnel to perform other tasks and speed up the completion of a road project, the pilot study found. MnDOT estimates that the resulting cost savings can cover an AFAD’s purchase costs within two years.

MnDOT has planned a project to determine whether it is feasible to use a self-propelled device to push or pull an AFAD so it can be used in moving operations such as patching potholes or cracks, which make up more than half of MnDOT’s flagging operations.

Using Smartphone and Bluetooth Technologies to Help the Visually Impaired Navigate Work Zones 

2014-12 ImageIn a study released in February 2014, researchers developed and tested a new system to provide audible messages to visually impaired pedestrians for navigating work zones.

The system uses Bluetooth beacons attached to work zone infrastructure that sends messages to a pedestrian’s smartphone app rather than the traditional method of beeping buttons that announce a message when pressed.

Technology to Alert Drivers to Work Zones

2012-26 ImageBy creating a tactile vibration and sound, rumble strips effectively alert distracted drivers to potential danger. However, they are not suitable for moving operations because repositioning them is too labor-intensive. MnDOT needed a method of alerting drivers about upcoming work zones that is more dynamic than
static signs but is portable and can be used in a moving work zone.

The Intelligent Drum Line system, developed in a 2012, could significantly improve work zone safety by relaying audible and visual warnings from traffic drums to speeding drivers as they approach. Further development is needed to ensure the system is cost-effective and portable to serve MnDOT’s needs.

Protecting Bees & Butterflies With Right-of-Way

Bees, butterflies and other pollinators busily work on our behalf to help our crops and wild plant life reproduce. Most plants cannot produce fruits and seeds without the aid of these little bugs.

MnDOT is taking steps to ensure that the habitat these creatures depend on gets the protection it needs.

In addition to recently signing an agreement with five other state DOTs to improve pollinator habitat along Interstate 35, a key migratory corridor for Monarch butterflies, MnDOT has just completed a review of other state and local government practices to identify more opportunities to use existing right-of-way to protect pollinators.

“State roadways have acres and acres of habitat ideal for pollinators,” said MnDOT Commissioner Charlie Zelle, during the announcement about the I-35 initiative. “With some careful planning, we can ensure that Monarch butterflies and other creatures that pollinate are able to thrive, which ultimately benefits our food sources and us.”

New Opportunities for Protecting Pollinators

A Transportation Research Synthesis (TRS) released this week underscores MnDOT’s commitment to maintaining roadside habitat for pollinators.

MnDOT set out to learn about the experiences of other state departments of transportation and local agencies in maintaining pollinator landscapes on highway rights of way through partnerships with individuals, groups or local agencies.

Results of the literature review are supplemented with findings from a survey of selected state DOTs and Minnesota counties. Nine state DOTs describe current practices or plans to develop new pollinator-specific partnerships; existing partnerships that have been expanded to address pollinators; and Adopt-a-Highway programs that support maintenance of vegetation in the right of way.

The Transportation Research Synthesis (TRS) may lead to enhancements to MnDOT’s existing practices or the development of a new pollinator-specific partnership program.

While MnDOT does not have a community partnership that focuses solely on promoting pollinator habitat, its Community Roadside Landscape Partnership Program allows Minnesota communities to partner with MnDOT to establish and maintain landscaping in the ROW along highways that traverse their communities, and these landscaping treatments may benefit pollinators.

MnDOT has also partnered with the Minnesota Board of Water and Soil Resources and the Minnesota Department of Natural Resources to establish more than 20 native seed mixes for use on Minnesota roadsides. MnDOT’s online PlantSelector tool includes a seed mix tab to help designers and novices select the right seed for the right place.

Learn more:

Drones, slope slide prevention among MnDOT’s research implementation picks

Developing the guidance needed to begin using drones  for bridge inspections statewide is among the Minnesota Department of Transportation’s latest batch of research implementation projects.

MnDOT recently announced the selection of a dozen research implementation projects for funding in Fiscal Year 2017.  In addition to continuing MnDOT’s pioneering drone research, top initiatives aim to improve the accuracy of bridge load ratings and map slopes statewide to identify locations that are vulnerable to flash flooding.

Each winter, MnDOT solicits proposals from staff who want to put local or national research into practice in their day-to-day work.

MnDOT is researching how data and images collected by drones, such as the Aeryon Skyranger shown here, could aid bridge inspectors.
MnDOT is researching how best to integrate drones into its bridge inspection procedures.

The state research program’s governing board then selects projects for funding based on benefits, impacts on the department and support from management.

Project champions take previously proven concepts and help MnDOT turn them into useful practices and procedures to make the state’s transportation system better. Funds can be used for equipment, consultant services or researcher assistance.

“The research implementation program fills the gap between research and deployment of new methods, materials and equipment,” Bruce Holdhusen, MnDOT Research Services senior engineer, said.

Here are the 12 newly funded research implementation projects by category:

Bridge and Structures

  • Improving Quality of Bridge Inspections Using Unmanned Aircraft Systems (UAS)
  • Prestressed Concrete Beam Shear Rating
  • OmniScan Phased Array Ultrasonic Corrosion Imaging System

Environmental

  • MnDOT Slope Vulnerability Assessments

Maintenance Operations

  • Ultra-thin Bonded Wearing Course (UTBWC) Snow and Ice and Wind Effects

Materials and Construction

  • Cold In-Place Recycling (CIR) for Bituminous Over Concrete (BOC)
  • Geogrid Specification for Aggregate Base Reinforcement
  • Balanced Design of Asphalt Mixtures
  • Cone Penetration Testing (CPT) Design Manual for State Geotechnical Engineers

Policy and Planning

  • One-year Pilot Test and Evaluation of ASTM DOT Package Compass Portal

Traffic and Safety

  • Improve Traffic Volume Estimates from Regional Transportation Management Center (RTMC)
  • Understanding Pedestrian Travel Behavior and Safety in Rural Settings

The Future is Now: MnDOT Goes High-Tech

When it comes to creating the transportation system of the future, MnDOT is already doing its research and laying the groundwork for great things to come.

13-JamesBenhamTechnology300
James Benham, JB Knowledge, speaks at the Transportation Conference. (Photo by Rich Kemp)

Last month at Minnesota’s Transportation Conference, a keynote session by JB Knowledge CEO James Benham titled “Future Forecast: How Drones, Sensors, and Integrated Apps are Rewriting the Rules” inspired many people in the room.

Among the topics Benham cited in his talk were the Internet of Transportation, unmanned aerial vehicles (drones) and 3-D printing, which MnDOT is already studying or even using.

Internet of Transportation

MnDOT recently produced series of white papers on technological trends that could impact transportation infrastructure in Minnesota.

In January, MnDOT Research Services published these papers in a report titled “The Transportation Futures Project: Planning for Technology Change.”

GoogleCar
Google is one of many companies developing autonomous vehicle technology that researchers believe will make driving nearly extinct by 2040. (Photo courtesy of Google)

The report details how the transportation system can accommodate such imminent innovations as autonomous vehicles, mobile web services, mobility as a service, information and communication advances, infrastructure sensors and energy and fuel alternatives.

For example, researchers predict that driving faces near-extinction by 2040, when non-autonomous vehicles will no longer be allowed on public roads at most times. As a result, total transportation-related fatalities may drop 90 percent, road geometry, sightlines and other design priorities may shift, and capacity and speed limits will likely increase on most major roadways.

Unmanned Aerial Vehicles (Drones)

Drone
MnDOT is researching how data and images collected by drones could aid bridge inspectors.

When it comes to drones, MnDOT is already conducting important research that the rest of the nation is closely following. Tara Kalar and Jennifer Zink from MnDOT, and Barritt Lovelace of Collins Engineers, spoke about their efforts at last month’s conference.

Last year, MnDOT Research Services published a report titled “Unmanned Aerial Vehicle (UAV) Bridge Inspection Demonstration Project” that detailed how MnDOT could use drones to perform bridge inspection functions. The initial research project tested one drone’s capability in a variety of bridge inspection scenarios last summer at four Minnesota bridges.

In November, researchers conducted a second research phase to test a more specialized drone at the Blatnik Bridge in Duluth that coincided with that bridge’s regularly scheduled inspection.

A few weeks ago, researchers secured funding to conduct a research implementation project that aims “to implement a statewide UAS (unmanned aircraft systems) bridge inspection contract, which will identify overall cost effectiveness, improvements in quality and safety, and future funding sources for both state and local bridges,” according to the project proposal.

3-D Printing

Benham’s talk also addressed 3-D printing, which Chad Hanson, a District 6 project manager, has already used successfully.

Hanson spoke at the conference about his experience using 3-D printing to create a model of the Red Wing Bridge project that brought the project idea to life. According to Hanson, the model enhanced public engagement and informed preliminary design efforts for the bridge.

Chad Hanson photo
Chad Hanson, District 6 engineer, used 3-D-printing to create a model of the Red Wing Bridge that was used during the project’s public engagement events. (Photo by Mike Dougherty)

Partners, stakeholders and members of the public could see, touch and hold the 3-D printed models, which accentuated the project’s engagement process.

Minnesota transportation research blog