Category Archives: Maintenance Operations

Roadmap created for rollout of unified OSOW permitting

The second phase is nearing completion for a project aimed at creating a Unified Permitting Process (UPP) for oversize/overweight (OSOW) vehicles in Minnesota. One outcome of this phase is a roadmap that will define steps for future phases, including statewide implementation.

Currently, haulers need to apply for OSOW permits with each individual roadway authority they will travel through. MnDOT, counties, townships, and cities all administer permits for their own roadways—so several different permit applications and processes can be required for a single haul.

“The streamlined permitting process is expected to increase efficiencies for the freight industry, which is good for our economy,” says Clark Moe, systems coordinator with MnDOT’s Operations Division, Office of Maintenance. “It will also enable more effective enforcement and help us preserve the quality of our road network.”

Through the UPP, agencies should have a better idea of what’s happening on their roads, says Rich Sanders, county engineer for Polk County. “Throughout the state, there are a lot of hauls we don’t even know about, let alone if they will use a restricted bridge or road.”

UPP Phases I and II

Phase I of the UPP project examined the feasibility of implementing a permitting platform. Completed in 2017, this phase included listening sessions across the state with the hauling industry, local agency engineers, law enforcement, state agencies, and MnDOT staff. Eighteen public and private entities collaborated to develop policies, processes, and plans for UPP technology. The final report concluded that a reference platform system for processing permit applications would be the best approach to explore.

Technical Schematic of a Reference Platform. The permitting platform will connect various software and data sources
The permitting platform will connect various software and data sources

Phase II was a proof-of-concept pilot project spanning St. Louis County, Polk County, the City of Duluth, and MnDOT Districts 1 and 2. The goal was to see if a permitting platform would work across jurisdictions connecting various permitting software and using multiple system processes. “The platform has to be usable in different ways and be able to channel payment back to MnDOT or a county or city,” Sanders says. “Phase II showed UPP could work.”

Phase II also underscored the complexity of the issues to come. “The vision is for haulers to enter their license data, and the required permit data would automatically populate the permit,” says Mitch Rasmussen, assistant commissioner with MnDOT State Aid. “But all kinds of software systems are now in use by local agencies, and MnDOT’s Office of Freight and Commercial Vehicle Operation is preparing to replace the two online systems it’s been using for decades. All the systems will need to talk to the unified platform. It will take time and money to build. The roadmap from Phase II can help us get there.”

Policy and fee differences are another challenge. To gather context and ideas, MnDOT recently completed a Transportation Research Synthesis to explore the practices of other state transportation agencies in setting, collecting, and distributing permit fees for heavy commercial OSOW vehicles (see related article). Another MnDOT study is under way to gather basic data about the permit fee policies of counties in Minnesota and throughout the country, including authority for the fees, cost range, and fee types.

When Polk County switched from a paper system to an electronic one, industry started applying for permits more consistently, Sanders says. With the paper system, five or six permit applications would be faxed in each year, and approval could take two days. But with its online system, the county received 201 applications between January 1 and October 26, 2018. “Approval might take us 30 seconds,” he notes.

UPP work to date has been funded by MnDOT and the Minnesota Local Road Research Board. Others involved include the Federal Highway Administration, state agencies (Minnesota Department of Public Safety, Driver and Vehicle Services, Minnesota State Patrol, Minnesota IT Services Geospatial Information Office), associations (Minnesota Association of Townships, Minnesota County Engineers Association, Associated General Contractors of America), private businesses (ProWest, SRF Consulting, Midstate Reclamation & Trucking, Tiller Corporation), and educational institutions (Upper Great Plains Transportation Institute, NDSU; Alexandria Technical & Community College). UPP Phases I & II were a unique collaborative public-private partnership to resolve a long-standing problem.

Next phases and final outcome

Moving forward, Phase III will begin development of the unified system using real data from multiple road authorities and databases in MnDOT Districts 1 and 2. Phase IV will take the platform beyond Districts 1 and 2 and roll out the system for testing statewide. Estimated completion is two to three years.

“Under current plans for the unified system, Minnesota road authorities will continue to set their own fees and may be able to connect their existing software, although some interoperable adaptations will be needed,” Moe says. “The new permitting process will focus on education for haulers, permitting agencies, and the public, as well as engineering decisions by agencies. This, in turn, will lead to increased enforcement effectiveness to help preserve road quality while boosting the economy.”

“Many decisions are still on tap,” Rasmussen adds. “There’s no decision yet of who’s going to own it and manage it, for example, or what fees might be recommended. There are a million moving parts, and many agencies and interests are involved. But we’re taking big strides toward our central goal: putting the right load on the right road, the right way, right away.”

This article by Pam Snopl originally appeared in the December issue of the Minnesota LTAP Technology Exchange newsletter.

Report recommends ways to reduce snowplow operator fatigue

Snowplow operators face harsh driving conditions and must also deal with fatigue and drowsiness. A recent multi-state research project identifies factors that cause driver fatigue in snowplow operators and recommends cost-effective solutions to help reduce it.

Clear Roads – a winter maintenance research initiative – surveyed 33 member states to gather data on snowplow operators’ experiences with fatigue. More than 2,000 snowplow operators from 23 Clear Roads states responded.

Nearly all the respondents (94 percent) reported feeling fatigue at some point while operating a snowplow during winter weather events. The majority of vehicle operators (59 percent) reported their shifts of 8 to 16 hours included both daytime and nighttime segments. Smaller proportions reported that they worked primarily during the day (22 percent) or primarily at night (18 percent).

Survey results also indicated that more experienced operators were more prone to fatigue, and those who worked shifts lasting longer than 16 hours reported significantly higher levels of fatigue.

Based on the results and analysis, researchers ranked the in-cab and external equipment that caused fatigue. The top four equipment-related sources of fatigue were bright interior lighting, standard windshield wipers, misplaced or insufficient auxiliary lighting, and old or uncomfortable seats.

Among the non-equipment-related sources of fatigue, the most commonly reported factor was silence (lack of music or talking), followed by length of shift, lack of sleep, and insufficient breaks.

Snowplow on a snowy highway

Using the same ratings, researchers developed a list of recommended actions that can be implemented by agencies to decrease driver fatigue. The recommendations were based on a comparison of each solution’s costs (equipment costs and potential risk of adversely affecting fatigue) and benefits (effectiveness in reducing operator fatigue).

Among the researchers’ equipment-related recommendations, the most cost-effective called for adding:

  • A CD player or satellite radio to deliver music or speech, preventing short-term fatigue.
  • Dimmable interior lighting to reduce reflections on the windshield and windows, providing better visibility.
  • Dimmable warning lights to reduce back-reflected light from the warning lights, lowering visual distraction.
  • Snow deflectors to reduce the amount of snow blown on the windshield, providing better visibility.
  • Heated windshields to reduce snow and ice buildup on the windshield, providing better visibility.

Non-equipment solutions included encouraging adequate breaks, limiting shifts to 12 consecutive hours when feasible, developing a fatigue management policy, encouraging a healthy lifestyle, and designating dedicated rest locations for operators.

According to the report, both the equipment-related and non-equipment-related solutions provide easy and quick corrective actions that agencies can implement immediately to increase the health and safety of snowplow operators.

Learn More:

Clear Roads is a multi-state winter maintenance research initiative. This article originally appeared in the September issue of the LTAP Technology Exchange.

Pilot Program Promotes Benefits of Snow Fences

A new program piloted in western Minnesota to increase snow fence use among private landowners has been so successful that MnDOT is looking at rolling it out statewide.

The University of Minnesota’s Center for Integrated Natural Resource and Agricultural Management worked with MnDOT District 8 staff for more than a year to develop and test a snow fence outreach program that could be used by MnDOT district offices.

“After our training, we saw a 300 percent increase in the number of standing corn rows, and that was on the initiative of a few people in the maintenance group. We’d like to spread the training to other districts,” said Dean Current, Director, University of Minnesota Center for Integrated Natural Resource and Agricultural Management.

Background

Living snow fences are natural vegetative barriers that trap blowing snow, piling it up before it reaches a road, waterway, farmstead or community. It could include leaving a few rows of corn or hay bales along the road side, or even temporary fencing.

MnDOT has about 3,700 sites that are suitable for snow fences. It estimates that if 40 percent of problematic sites had snow fences, the state could save $1.3 million per year in snow management costs. Despite the cost, safety and environmental benefits, private landowners have shown limited interest in the program. An effective outreach program was needed along with strategies for identifying MnDOT personnel who could promote the practice and recruit landowners to the program.

“If we can implement our blowing snow control program more consistently, we can help reduce crash severities, improve operational efficiencies due to snow and ice control measures, and improve the mobility of the public,” said Dan Gullickson, Snow Control Program Administrative Coordinator, MnDOT Office of Environmental Stewardship.

How Did We Do It?

In January 2016, investigators surveyed MnDOT District 8 employees to gauge their understanding of snow fences as well as their approach to working with landowners to implement blowing snow control measures. The investigators studied survey responses to assess awareness of and interest in promoting the use of snow fences and grading to reshape road environments for snow and erosion control. They also examined snow fence programs from around the country, identifying types of snow fences used and characteristics of programs that successfully recruit landowner participation.

A permanent snow fence along a rural highway.
A permanent snow fence along a rural highway.

Results from these efforts were used to design an outreach program that was presented to District 8 staff. In January 2017, investigators surveyed the staff to evaluate the training and redesign the program accordingly. Finally, investigators evaluated market values of various snow fence designs.

What Was the Impact?

Initial survey results identified two relevant types of district personnel: maintenance and program delivery staff. Maintenance staff involved in plowing and road care interact more with landowners than do program delivery staff, who design or redesign roadways and may be involved in acquiring land for snow fences. Though tailored for each group, all training described the MnDOT blowing snow control program and its implementation, the role of snow fence coordinators, operational benefits and awareness of how promotion of the program fits within the scope of an employee’s duties.

Keys to the success of snow fence programs around the country include strong relationships and direct communication with local landowners, funding, landowner interest in conservation and public safety, and observable benefits.

A follow-up survey showed marked improvement in staff knowledge of the program and willingness to promote it. Landowner participation grew from four sites to 15 in the year after training, due mostly to maintenance staff participation. Survey respondents suggested potential program improvements such as more program champions; outreach in spring and summer at community and farmer gatherings as well as at local and state fairs; and a clearer understanding of how program promotion fits within job responsibilities.

The market study demonstrated that nonliving snow fences, though the most expensive option for MnDOT, offer the largest benefit per acre. Landowners seem to prefer living snow fences and standing corn rows. MnDOT may wish to raise the annual payment for all living snow fences.

What’s Next?

Considerations for MnDOT include implementing the training program in other districts, further defining central and district staff roles in snow fence promotion and implementation, incentivizing snow fence champions, developing more outreach material and maintaining relationships with landowners.

A new project currently under way aims to further expand these efforts.

This post pertains to Report 2017-42, “Expanding the Adoption on Private Lands: Blowing-and-Drifting Snow Control Treatments and the Cost Effectiveness of Permanent versus Non-Permanent Treatment Options.” Related research can be found by searching “snow fences” under “Projects” at MnDOT.gov/research.

 

Researchers Dig Deeper into AVL/GPS Use in Winter Maintenance Operations

The Minnesota-led Clear Roads winter maintenance program has profiled six state agencies’ experience with automatic vehicle location (AVL) and GPS in winter maintenance fleets to share best practices with other cold weather states. Strong support by these agencies drives robust use of the technologies for location tracking, asset monitoring and planning for future storms.

AVL and GPS have been widely embraced in winter maintenance operations by transportation agencies around the country. But tracking vehicle locations for operational and safety reasons only scratches the surface of these systems’ potential uses. Many agencies also use AVL/GPS to collect extensive data for planning, operations, safety and inventory tracking to improve efficiency and response strategies.

Need for Research

AVL and GPS have been used in winter maintenance operations for several years. While most agencies use AVL/GPS for tracking vehicle location, the technologies offer operational, safety, inventory and planning applications, as outlined in a 2016 Clear Roads synthesis report. How agencies actually employ these automatic data collection technologies has remained less well-known.

Objectives and Methodology

The goal of this project was to explore agencies’ experiences and best practices in planning, implementing and using AVL/GPS technologies for winter maintenance activities. The investigation began with a survey of state and selected metropolitan transportation agencies about their level of commitment to AVL/GPS implementation and the data the agencies collect, use and share.

Investigators worked closely with Clear Roads to identify levels of usage of the technologies. Then they selected six agencies that represented various commitment levels, interviewed staff from each agency and gathered relevant documents about agency use of AVL/GPS. Using the information obtained during the interviews, researchers prepared case studies of each agency and recommendations for other agencies to further implement and utilize the technologies.

AVL/GPS hardware installed below and behind the seat in a snowplow
AVL/GPS hardware in this Sawyer County, Wisconsin, snowplow mounts below and behind the seat—a secure position that does not inconvenience the operator.

Results

Twenty-seven of the 38 agencies that responded to the survey reported using AVL/GPS to automatically collect winter maintenance data, while 36 of the 38 agencies indicated plans to add or expand use of the technologies in the future. Based on feedback from these agencies, researchers developed three levels of AVL/GPS use and categorized agencies according to the appropriate level.

Tier 1 agencies employ AVL/GPS for basic location tracking or monitoring. Utah DOT has mounted AVL/GPS behind the dashboard of every snowplow and incident maintenance truck (vehicles that assist stranded motorists on Utah’s roads and highways) in its fleet. The system connects with plow position sensors, tracks idling time and traveling speed, and reports plow locations on a publicly accessible website.

Tier 2 users add basic data collection, equipment integration and system reporting features to Tier 1 usage, often in concert with other technologies. Washington State DOT’s Tier 2 usage integrates AVL/GPS with spreader controllers, plow position sensors, and air and pavement temperature sensors in 80 percent of its fleet to track material use, road weather and operational analysis data. Michigan DOT integrates AVL/GPS with spreaders, plows and dashcams in 94 percent of its fleet to track vehicle location, vehicle diagnostics and material use, and to use for operational analysis and information sharing with the public.

Tier 3 agencies conduct complex data collection, integration and reporting activities with AVL/GPS as part of a suite of instruments and applications that collect and transmit data to users, the agency and, in some cases, the public. Colorado DOT (100 percent of its fleet), Nebraska DOT (33 percent) and Wisconsin DOT (53 percent) link AVL/GPS to data collectors, plows, spreader controllers, pavement and air temperature controllers, and other equipment. Each agency tracks vehicle location, material use, treatment recommendations, vehicle diagnostics and data for operational analysis, among other uses. Colorado and Wisconsin DOTs share data with a maintenance decision support system; Colorado DOT also shares information with the public.

Keys to success with AVL/GPS include obtaining full organizational and financial support from agency management, piloting the system with vendors and operators to identify objectives for use, providing operators with training that emphasizes the technologies’ operational and safety benefits, involving agency mechanics in installation, and using the system data for real-time adjustments to maintenance and resource-allocation strategies.

“The recommendations were very constructive— everything from planning and decision-making to how to best collect data and use it for performance measurement,” said Project Champion, Patti Caswell, Oregon Department of Transportation.

Benefits and Further Research

The final report offers information that will be useful to prospective and current adopters, describing best practices in AVL/GPS planning and implementation, procurement, installation, training, data collection and utilization, and operations and maintenance.

Future research may evaluate methods for integrating technologies from various manufacturers into a cohesive, operational system. Turnkey options remain limited, and integrating sensor, camera, data collection and GPS presents a number of technical challenges. Related study may evaluate communication terminology for uniform data
sharing between agencies. Follow-up research could also identify the costs and benefits of AVL/GPS to quantify the value of these technologies to users.

Connected vehicle technologies, which use roadside units to communicate with other roadside units and wirelessly with vehicles, offer potential applications for real-time data collection and sharing among plow operators and other stakeholders. The relative value and ability to implement such systems may warrant research and comparison to
AVL/GPS.

This post pertains to Strong Agency Support, Multiple Applications Drive AVL/GPS Use , published October 2018. The full report and presentation can be accessed at  Project 16-01, Utilization of AVL/GPS Technology: Case Studies.

New Training Tools Offer Clear Guidance for Liquid Roadway Treatments

The Minnesota-led Clear Roads winter maintenance research program has developed a set of training tools—two videos and two quick reference guides—to promote liquid roadway treatments and provide practical guidance for agencies implementing a liquid anti-icing/deicing program.

Many agencies use liquids such as salt brine as anti-icing treatments to prevent ice from forming on roadways. But the application of salt brine as a deicing treatment during or after a winter storm has been slower to catch on. When used in the right conditions, liquid deicing treatments are as effective as granular sodium chloride while using less salt, but liquid-only routes are used by only a minority of winter maintenance agencies. To get the word out about the benefits of using salt brine and other liquids as both anti-icing and deicing treatments, as well as provide practical information about liquid application procedures, Clear Roads initiated this project.

Need for Research

While there is a wide range of information available about the use of brine and other liquids for anti-icing and deicing, there was a need to offer clear, comprehensive guidance in a single resource and to provide training tools for implementation.

A 2010 Clear Roads project helped lay the groundwork for this effort by identifying the parameters for effective implementation of liquid-only plow routes. That project produced a quick reference guide that outlined the conditions when liquid deicing treatments are most effective and provided application rates and implementation recommendations. A follow-up study was needed to update this guidance and to develop tools to facilitate the implementation of liquid-only plow routes.

Maintenance truck applying liquid de-icer on highway

Objectives and Methodology

This project’s goal was to produce a set of training tools—two videos and two quick reference guides—explaining the benefits of liquid-only plow routes, outlining procedures for implementation, and addressing misinformation and misconceptions. The project had two objectives:

• Inform agency decision-makers and the general public about the benefits of liquid roadway treatments while dispelling common myths.
• Provide practical guidance for maintenance managers and plow operators, and for agencies looking to start a liquid-only program.

Researchers began by conducting a literature review of research and practices related to liquid-only plow routes. They then sent an online survey to agencies in 27 states to determine which agencies used liquid-only roadway treatments. The survey yielded 92 responses from state DOTs and county and municipal highway departments. Follow-up interviews with 14 survey respondents gathered information about types of roads where liquid-only routes are used, application rates and material usage, brine making and storage, cycle times and loading times, and public perception and environmental concerns.

Results

Of the 92 survey respondents, 30 indicated that their agency had a liquid-only route. In general, these respondents reported that liquids are more effective than solid deicers in
the right circumstances. Based on the information gathered in the survey, interviews
and literature review, researchers created two videos:

  • A shorter video for agency decision-makers and the general public that discusses the benefits of liquid-only treatments while addressing common misconceptions (particularly misinformation about corrosion and salts in the environment).
  • A full-length video for practitioners that includes information from the short video as well as tips for starting a liquid-only program, discussion of equipment types, and recommended usage parameters and application rates.

To complement the videos, researchers created two 2-page quick reference guides—a Start-Up Reference Guide to help agencies gain buy-in for a liquid-only program and a Technical Reference Guide with more detailed usage parameters, application rates and general tips.

“To effectively get the word out about liquid-only road treatments, there was a need to put the right message in front of the right audience in a compelling way and to dispel myths and misconceptions. These guides and videos do just that,” said Project Co-Champion, Scott Lucas, Ohio Department of Transportation.

The videos and quick reference guides communicate key information about liquid-only routes, including:

  • Appropriate use: Liquids are especially effective during light snowfalls and at milder temperatures. Agencies also use liquids to loosen packed snow for plowing; during high winds when granular salt may blow off the roadway; and as anti-icing treatments before freezing rain.
  • Benefits: Liquid deicing treatments use less salt, which leads to cost savings and reduced environmental impact. Liquids begin to work immediately, and they stay on the roadway (no bounce or scatter).
  • Misconceptions: Liquid applications of salt brine do not cause more corrosion damage to vehicles than granular salt. Granular salt must dissolve into brine on the roadway in order to melt snow and ice, so either approach exposes vehicles to salt brine. Corrosion inhibitors can help; some studies show they are more effective with liquids than solids.

Benefits and Further Research

The videos give transportation agencies modern communication tools to help target specific audiences: The shorter video is more appropriate for social media distribution and sharing, while the longer video is more useful for agency staff training and cross-agency communication. Both the quick reference guides and the videos will help agencies garner support for liquid-only programs and provide practical guidance for
implementing them.

This post pertains to Liquid Roadway Treatments: Informational and Training Videos, published November 2018. The full report, videos and final presentation can be accessed at 16-06: Training Video for the Implementation of Liquid-Only Plow Routes.

New system underway to determine road recovery time during snow events

Researchers at the University of Minnesota Duluth (UMD) have developed a system that can use highway loop detector traffic flow and weather data to determine when road conditions have recovered from a snow event. Currently, the Minnesota Department of Transportation (MnDOT) relies on snowplow drivers to estimate when roads are back to normal. The new system aims to relieve drivers of that burden and increase overall fleet efficiency.

In two previous MnDOT-funded projects, UMD researchers looked at using data from loop detectors along with weather station data to develop an automated system that determines normal condition regain time (NCRT) based on changes in traffic flow patterns. The goal is to improve the accuracy of road condition estimates and give dispatchers a big-picture view of traffic flow.

2018-01-p1-image
A line drawing showing a rectangular closed wire loop approximately 6 feet long and 4 feet wide on a road lane beneath the pavement surface. The loop is attached by a length of wire to data collection equipment on the roadside.

“This is a shift to different criteria,” says John Bieniek, Metro District maintenance operations engineer at MnDOT. “The bare lane regain time is now based on judgments from plow operators on the highways and phone calls to dispatchers. We could use the new system to quickly direct trucks to harder-hit areas within and between stations as they are needed.”

The latest project, led by UMD civil engineering professor Eil Kwon, transformed a previously developed computer model into a user-friendly, integrated computer system. The system includes a data management module, a module for target detector station identification and speed recovery function, an NCRT estimation module, and a map- based user interface that allows dispatchers to generate the estimated NCRT for a specified area. Dispatchers and supervisors can also use the interface to assess traffic flow variations, assign plows, and generate reports for past snow events.

The team tested the new integrated system on data gathered from I-494 and I-694 during two snow events in 2015 and 2016. Results show the system was able to successfully generate NCRTs that met or exceeded the accuracy of estimates by maintenance personnel.

“The system developed in this research can provide consistent and objective estimates of the NCRT by utilizing the traffic flow data that are currently available from the existing detection systems in the metro area,” Kwon says.

Another goal of the project was determining a data-derived definition of normal traffic flow for snow-cleared roadways. As part of this effort, researchers found that traffic resumed free-flow conditions after roads were cleared, but always at a slightly slower speed than on normal, dry roads. Researchers then developed a process to determine the “wet-normal” free-flow speed at each detector station based on the traffic flow pattern during a given snow event.

So far, the system has only been used with data from past snow events and has not generated results in real time. Going forward, MnDOT plans to fund additional work that will incorporate big data tools to allow the system to operate in real time—as storms happen—to improve roadway snow operations.

This article originally appeared in CTSs Catalyst Newsletter, May 2018 and pertains to Technical Summary 2018-01TS. The full report, “Development of a Road Condition Recovery Time Estimation System for Winter Snow Events” 2018-01, published January 2018, can be accessed at mndot.gov/research/reports/2018/201801.pdf.

New measure allows comparison between bridge and pavement conditions

Transportation planners lack a method to directly compare bridge and road conditions. In a new MnDOT-funded study, University of Minnesota researchers have proposed a Percent Remaining Service Interval (PRSI) measure that can uniformly assess the condition of bridges and pavements, enabling planners to make the most efficient use of preservation and improvement funding.

A nighttime view of workers and heavy equipment at a road construction site
Planners would like a condition measure similar to RSL that could be used to compare and prioritize needs for highway and bridge construction.

“Both the MnDOT Bridge Office and the Materials and Road Research Office have very good management systems in place,” says Mihai Marasteanu, a professor in the Department of Civil, Environmental, and Geo- Engineering (CEGE) and the study’s principal investigator. “There is a good potential to develop a new common metric that both offices could use.”

What Did We Do?

To begin developing this new measure, researchers conducted a literature review of current methods used in asset management and life-cycle cost analysis. The review of bridge research focused on performance measures and life expectancy assessment methods, while the study of pavement literature concentrated on performance measures as well as on the use of road service life measures.

Next, the research team, which included civil engineering bridge professor Arturo Schultz, surveyed both bridge management staff and pavement management staff from state transportation agencies. Team members then analyzed the asset management practices of MnDOT’s Office of Bridges and Structures and Office of Materials and Road Research to identify methods for assessing service lives and rehabilitation needs and to highlight the similarities and differences in approaches.

Based on the findings from the survey and analysis, researchers suggested the new method of PRSI that would serve both pavement and bridge needs and offered guidelines for the next steps in developing and implementing a unified PRSI procedure.

“Ultimately, funds for guardrail repairs are drawn from the same purse that pays to fill a pothole or repair a deck joint,” Marasteanu says. “With PRSI, planners could target average values across systems to optimize life-cycle costs and pursue an even distribution of PRSI values to make planning consistent from year to year.”

What’s Next?

In the next phase of the project, researchers will work with the pavement office to identify relevant data for calculating PRSI for pavements. “In addition, we plan to identify the time and costs required to reach the evenly distributed configuration of PRSIs necessary for planning consistency, assess how preservation activities impact funding efficiency, and calculate recommended metrics for asset sustainability,” Marasteanu says.

This article originally appeared in the Center for Transportation Studies’ Catalyst Newsletter, October 2018. The full report, published July 2018, can be accessed at “Remaining Service Life Asset Measure, Phase I,” .

 

 

Improved Specifications for Tightening Anchor Bolts on Signs, Luminaires and Traffic Signals

In recent years, MnDOT inspection crews have reported loose anchor bolts on many support structures for overhead signs, high-mast light towers, tall traffic signals, and other signs and luminaires. On newly installed structures, many nuts on anchor bolts may loosen in as little as three weeks; on older structures, they may loosen less than two years after retightening.

Federal standards mandate inspections at least once every five years, a requirement that already stretched MnDOT’s resources for managing light poles, traffic signals and 2,000-plus overhead signs. With an estimated 20 percent of loose anchor bolts in MnDOT’s highway system at any given time, crews would have to inspect structures every year to ensure public safety.

This issue is not unique to Minnesota. In a national survey, some states estimate as many as 60 percent of their anchor bolts may be loose. Minnesota, like other states, tightens anchor bolts according to American Association of State Highway and Transportation
Officials (AASHTO) standards. But the standards and procedures for tightening and retightening bolts were insufficient. To develop appropriate specifications, MnDOT needed to know why bolts loosen. The agency also needed improved standards and procedures to ensure that anchor bolts are tightened effectively

What Was Our Goal?

MnDOT decided to undertake a research project to determine why anchor bolts and nuts on sign and luminaire support structures loosen after installation or retightening, and to develop new standards and procedures that ensure proper and lasting tightening of these bolts.

Researchers from Iowa State University examined specifications and procedures for tightening anchor bolts on support structures in Minnesota. They also developed new specifications and instructions to help crews tighten bolts properly and ensure lasting safety of signs and lights in Minnesota’s highway system.

How Did We Do IT?

Researchers conducted a literature search on anchor bolt loosening. Then they surveyed MnDOT maintenance staff on bolt lubrication and tightening practices, and visited sites in Minnesota and Iowa to observe installation and retightening practices.

In the laboratory, investigators studied the relationship of torque, rotation and tension of various bolt diameters and material grades. They found that bolt stiffness, grip length (the distance between the nuts at each end of an anchor bolt in a two-nut bolt system), snug-tight standards, lubrication and verification after 48 hours played a role in effective tightening practices.

To determine the impact of environmental and structural strain on bolt tightness, researchers monitored sign structures in the field and in the lab. They attached strain gages to the bolts and post of an overhead sign near Minneapolis-St. Paul and installed a wind monitor, camera and data logging unit nearby to collect strain and environmental data for four months. In the lab, they instrumented a post and baseplate mounted in concrete to compare current and proposed tightening specifications and practices.

Base of an overhead sign that shows large bolts
Researchers attached strain gages to the bolts and the mast of a new overhead sign. Installers followed new procedures and specifications to tighten the bolts so that investigators could evaluate the effectiveness of the new standards.

Investigators developed specifications for each bolt size and grade, anchor baseplate dimension and pole size used by MnDOT based on lab and field results. They also created finite element models to analyze future anchor bolt configurations.

What Did We Learn?

Over- and under-tightening contribute to premature loosening of nuts on anchor bolts. While contractors may lack the experience and training to properly use turn-of-nut guidance, AASHTO recommendations poorly serve the bolt sizes and grades used by MnDOT.

AASHTO’s snug-tight guidance neglects certain characteristics of nuts and bolts, and its turn-of-nut direction is provided for only two bolt sizes and two bolt grades. In some cases, these standards may cause the heads of small bolts to break off and may lead to undertightening of large bolts. MnDOT can measure torque in the field but cannot determine tension, making AASHTO’s equation for verifying torque and tension impractical.

“We have revised our specs to follow the recommended procedures for anchor bolt tightening. The new tables of verification torque values will be fine for both two-nut and one-nut anchor bolt systems,” says Jihshya Lin, Bridge Evaluation and Fabrication Methods Engineer, MnDOT Bridge Office.

Researchers revised the specifications to require bolt lubrication, establish torque levels for snug-tight and specify turn-of-nut rotation after snug-tight for a range of MnDOT materials:

• Eight bolt sizes, ranging from ¾-inch diameter to 2.5-inch diameter.
• Five bolt grades.
• Nine baseplate thicknesses.
• 12 single- and double-mast pole types.

The new specifications provide torque levels in tables to verify the tightness for each bolt, plate and pole type, eliminating the need to run equations. To assist crews that are installing or retightening anchor bolts, researchers developed guidelines that include a compliance form with a checklist to direct crews through each step of the tightening process and ensure proper tension.

What’s Next?

The new specifications and procedures should improve public safety and reduce the traffic control, manpower and equipment expenditures required to respond to prematurely loosened nuts. Continued monitoring of bolts installed and retightened under these specifications over time would help evaluate the new procedures.

A new implementation project is underway that will demonstrate these findings in the field.  Researchers will also produce educational videos for training and demonstration to MnDOT personnel and contractors.  Video topics will include:

  • Basic Concepts of Bolt Tightening
  • New Specified Procedures
  • Signals and Lighting
  • Overhead Signs

Additionally, researchers will provide one or more training sessions with training materials.  Materials and videos will be posted on a website developed by the researchers.

This post pertains to Report 2018-27, “Re-Tightening the Large Anchor Bolts of Support Structures for Signs and Luminaires,” published August 2018.

 

 

New Project: Potassium Acetate As a Salt Alternative

This winter, MnDOT snowplow operators will test and document their experience using potassium acetate (KAc) during severely cold weather as a possible alternative to the commonly used deicing material sodium chloride.

MnDOT maintenance staff have used potassium acetate in the Duluth area as a deicing alternative in several locations (Bong Bridge, Blatnik Bridge, I-35 tunnels, and I-35 at Thompson Hill) with anecdotal success. Advantages of KAc include reducing chlorides runoff into water, a lower effective deicing temperature (approximately -20F) than salt or brine, and less corrosion to vehicles and public infrastructure.

KAc will be used on four plows at select locations in the MnDOT District 1 Duluth sub-area. Crews will document the effectiveness of KAc in removing snow and ice pack at temperatures of minus 15 to 20 degrees Fahrenheit and reducing the time it takes plows to achieve and maintain bare pavement during  severely cold temperatures.

In addition to evaluating potassium acetate as an alternative de-icing chemical, researchers will develop application guidelines and material handling requirements.

Project Scope

Researchers from CTC & Associates will review the 2018 Transportation Research Syntheses, Field Usage of Alternative Deicers for Snow and Ice Control, and identify any additional information that is publicly available regarding national and international use of KAc as a de-icing and anti-icing agent. The focus will be on successful uses of the material (material concentration and application rates, weather conditions, timing, etc.) by highway agencies or transferable practices by airports.

MnDOT District 1 personnel will conduct field tests of KAc on selected plow routes during the winter of 2018-2019 and document key data about the amount of material used, locations, equipment, storm characteristics, pavement conditions and other elements. Researchers will assist MnDOT with the design of the field study, the creation of a data gathering tools to be used by plow drivers, monitoring of data quality during the study, analysis of data gathered during the winter season, and writing a report presenting the study conclusions.

Watch for new developments on this project.  Other Minnesota transportation research can be found at MnDOT.gov/research.

New Project: Guide for Converting Severely Distressed Paved Roads to Unpaved Roads

Local agencies are increasingly looking at converting low-trafficked paved roads to gravel at the end of their life span to make budgets stretch. However, agencies have few resources to guide them in this process.

The Minnesota Local Road Research Board recently approved funding for a guidebook on effective practices for converting severely distressed paved roads to unpaved roads. The document will help engineers select roads for conversion, safely conduct conversions and communicate the rationale to the public. No such published document currently exists.

Montana State University researchers has been hired to develop the guidebook based on needs the research team previously identified in the National Cooperative Highway Research Program’s Synthesis 485, “Converting Paved Roads to Unpaved. The guidebook, anticipated to be published in late 2019, will include flowcharts that guide practitioners through decision-making processes. A companion webinar is also planned.

The guidebook will be divided into chapters, which will cover:

  • Methods to determine if a road is a candidate for conversion and determine the existing road materials and condition.
  • Methods to convert a road from paved to unpaved.
  • Methods to assess the life-cycles cost of construction and maintenance of the unpaved road.
  • Tools to effectively inform and communicate with the public
  • Safety implications of converting a severely distressed paved road to an unpaved road.

Background
While low- volume roads are typically identified as having an annual average daily traffic (AADT) of less than 400, roads that are appropriate candidates for conversion will typically have an AADT of less than 150.

These roads are often used by agricultural and extraction industries or to access homes and recreational areas. The type of road users, traffic patterns and vehicle types are all factors that need to be considered in the decision to unpave a road. Other factors include road condition, safety, agency maintenance and maintenance capabilities, as well as a life-cycle cost comparison of maintenance options (continued maintenance of the deteriorating road, rehabilitation of the paved road or conversion to an unpaved surface).

According to the research team, very limited information is available about converted roads, and what information is available often comes in the form of newspaper articles and anecdotal accounts of road conversions.

The document will serve as a formal and peer-reviewed information source. The use of the guide and acceptance of the practice of converting from paved to unpaved surfaces (unpaving) where warranted will provide a case for the acceptance of road conversions as another low-volume road management strategy.

Watch for new developments on this project.  Other Minnesota research can be found at lrrb.org and MnDOT.gov/research