Local agencies need cost-effective and durable turfgrass seed mixes to ensure grass coverage remains optimal along roadsides. In a recent study, researchers analyzed the performance of grass seed mixtures and planting costs, recommended region-specific mixes and developed a cost estimation tool for local agencies to be confident in their roadside vegetation choices.
Continue reading Exploring Region-Specific Roadside Turfgrass VarietiesTag Archives: environment
New Project: Update of Stormwater Management Best Practices Manual
The Local Road Research Board published the Stormwater Best Management Practice (BMP) Maintenance Resource Guide in 2009, and best practices for stormwater management have since evolved. Much has been learned about the benefits and limitations and inspection and maintenance activities of stormwater ponds, bioretention facilities, underground treatment devices, underground detention, and infiltration. Regulatory requirements have also changed as indicated in the Minnesota Stormwater Manual.
Continue reading New Project: Update of Stormwater Management Best Practices ManualNew Project: Sustainable Application of Tire Derived Aggregate in Stormwater Infiltration/Treatment
The reuse of old tires that often end up in landfills has a significant environmental benefit. Tire derived aggregate (TDA), a waste product from automobile tires, can be used in stormwater treatment systems and has shown to be effective at retaining phosphate. However, TDA does not prevent the leaching of metals including zinc and copper.
Developing media for stormwater infiltration/filtration that uses TDA in combination with materials that can capture metals has several advantages. It would prevent more pollutants from being released into Minnesota’s lakes and streams, save on landfill space and reduce stormwater management costs.
“The use of TDA has been proposed in the past for use in stormwater treatment. However, local agencies aren’t very familiar with the product being used for this application and have concerns about its potential to contaminate groundwater resources,” said Mark Hansen, city engineer, City of Coon Rapids. “Initial research is showing positive benefits for the use of TDA as a component of the stormwater treatment process, while minimizing its impacts to groundwater. Using TDA for this application provides a great opportunity to redirect old car tires from landfills and beneficially reuse them to assist in providing stormwater treatment.”
Objectives
- Select blend materials identified in literature review and mix them in different ratios with TDA.
- Measure the pollutant removal performance from runoff, leaching of zinc and copper from TDA, and infiltration capacity of each mix.
- Analyze the observed values to choose the suitable blend material/ratio.
- Perform lab batch tests to evaluate the potential leaching or removal of polyfluoroalkyl substances (PFAs) by TDA and the blends.
- Determine impact of biofilms on the leaching of zinc and copper from the mix (Biofilms will be grown on an already defined mix of TDA with blend material).
- Conduct outreach on project results and implications to management to key stakeholder groups.
Project Details
- Estimated Start Date: 06/03/2022
- Estimated Completion Date: 06/30/2025
- Funding: Local Road Research Board
- Principal Investigator: John Gulliver
- Co-Principal Investigator: Meijun Cai
- Technical Liaison: Mark Hansen
Details of the research study work plan and timeline are subject to change.
To receive email updates about this project, visit the Local Road Research Board website to subscribe.
Roadside Safe Spaces for Butterflies and Bees
Pollinators such as rusty-patched bumble bees and monarch butterflies, critical to our eco-system, are at risk due to the loss of native habitat. A University of Minnesota research team, with support of MnDOT and the Local Road Research Board, studied whether restored roadsides could provide safe habitats for declining pollinator populations.
Continue reading Roadside Safe Spaces for Butterflies and BeesReusing Local Byproducts in Sustainably Designed Soils
After road construction, soil in revegetation areas must retain adequate stormwater and provide stable embankments along the road. Revegetation can be challenging due to thin topsoil, and it often requires importing healthy organic soil and exporting excess construction soil generally unsuitable for plant growth.
Continue reading Reusing Local Byproducts in Sustainably Designed SoilsUltrasonic Devices Deter Bats During Bridge Repair
Researchers tested ultrasonic bat deterrence devices at two MnDOT bridges, tracking bat activity with acoustic echolocation recorders and field inspections. Deterrence devices used in short- and long-term trials dramatically reduced bat activity at bridge site. Analysis showed that bats return promptly when devices are turned off.
Continue reading Ultrasonic Devices Deter Bats During Bridge RepairGuidance for Working With Potentially Acid-Generating Materials
A new resource is available to help agencies greatly reduce the risk of disturbing potentially acid-generating (PAG) rock in places like northern Minnesota when conducting road projects. When exposed to air and water, PAG minerals can generate drainage that is hazardous to the environment. A MnDOT-sponsored research team developed a best practices manual that provides comprehensive steps to identify, mitigate and monitor PAG material during highway construction.
Continue reading Guidance for Working With Potentially Acid-Generating MaterialsTailgate Test Kit Speeds Up Flocculant Choice to Reduce Sediment in Runoff
The Tailgate Test Kit quickly and easily identifies flocculants that reduce turbidity in construction stormwater discharge. The mobile test setup efficiently determines which of the many available products works best for a particular construction site. In this study, 13 product combinations were tested. A short list of five tests was developed, as well as worksheets to aid in calculating the amount of flocculant needed and developing scale-up procedures.
“The Tailgate Test Kit is a cost-effective innovation that will help us determine the flocculant and quantity of product to use in the field and in real time,” said Dwayne Stenlund, Natural Resources Program Coordinator, MnDOT Environmental Stewardship.
“It’s important to add to the body of knowledge in this area,” said Joel Toso,
Senior Water Resources Engineer, Wenck Associates, Inc. “The Tailgate Test Kit is already being used in the field to help both contractors and maintenance workers make decisions.”
What Was the Need?
Stormwater runoff from construction sites often carries sediment from soil erosion, causing the water to become cloudy or turbid. Federal, state and local stormwater regulations prohibit construction sites from discharging water that is too turbid into the environment. Instead, the runoff must be sent to ponds to allow the sediment to settle to the bottom of the pond. The remaining clear effluent may then be discharged from the site.
The chemicals in flocculants speed up the sediment settling process by causing the sediment particles to clump together and fall to the bottom more rapidly. A number of flocculating agents are commercially available. The most effective agent for a specific situation is generally deter-mined by testing various flocculants with water samples in a lab. This selection process usually takes one or two days. Only after the appropriate flocculant is selected can the entire pond be treated.
To speed up this process, MnDOT has developed the Tailgate Test Kit, a series of tests that can be conducted in the field to determine the most effective flocculant, as well as the correct amount, for a specific construction site and soil type. What used to take a day or two to process in the lab now can be accomplished by field crews in an hour or two on the tailgate of a truck, enabling workers to begin treating the ponded turbid water much more quickly.
What Was Our Goal?
The overall goal of this study was to build upon the findings of several recent research projects, including “Flocculation Treatment BMPs for Construction Water Discharges” (2014-25), by developing and improving field methods to reduce total suspended sediment from construction stormwater runoff. A specific aim was to create a method for work crews to test water samples in the field using a mobile test toolkit that contains flocculants identified in previous research. Other goals included determining the most effective amount of the flocculant needed, developing the calculations needed for scale-up once the best product is identified and implementing a test for residual unreacted product.
What Did We Do?
To identify a variety of flocculant product types to evaluate with the Tailgate Test Kit, the research team summarized stormwater best management practices from the literature and from other departments of transportation. Since the effectiveness of product types varies depending upon soil and sediment types and environmental conditions, researchers conducted 13 tests of nine flocculant products (alone and in combination) taken from five distinct product classifications: mineral, polyacrylamide, chitosan, bio-polymer and anionic polyacrylamide. They also tested water samples from eight locations in Minnesota to ensure a cross section of representative samples.
What Did We Learn?
Using the results from these tests, the research team developed a short list of five tests that could be conducted in the field and incorporated in the Tailgate Test Kit. The five tests represent a range of flocculant product classifications and reduce the time required to complete the tests.
The team also prepared worksheets with mixing and dosing guidance to help users identify the most effective amount of product to achieve the target turbidity goal. Finally, the team developed scale-up procedures to aid in using test results to determine full-scale dosing rates on-site and procedures for testing new flocculant products.
The researchers investigated four methods for testing residual flocculant to detect any unreacted product in a sample. A preferred method was not identified during the course of this research but would still be a desirable research outcome.
What’s Next?
Next steps for this research effort include field implementation and new product evaluation.
First, investigators recommend developing a training module and field guide for using the Tailgate Test Kit to encourage implementation of the mobile kit throughout the state. If users understand how it works and how to use the test results for scale-up calculations, they will be more likely to use it.
Second, the product list should be kept current by testing additional flocculant products. It may also be beneficial to create a category for flocculants on the MnDOT Approved/Qualified Products List.
Finally, methods to identify residual and unreacted flocculant product need to be developed. If excess flocculant product is used in field tests, the residues will eventually have to be collected and removed for disposal. Minimizing the excess flocculant used at construction sites is desirable.
This post pertains to Report 2017-32, “Tailgate Test Kit for Determining Appropriate Sediment Reducing Chemicals and Dose Rates,” published July 2017.
Field Guide Helps Local Engineers Stabilize Damaged Slopes
Researchers identified 14 sites representing destabilized roadway slopes in Minnesota. Following site investigations, lab testing and modeling, researchers recommended eight slope stabilization techniques that local engineers can undertake without the help of outside geotechnical engineers. The methods were packaged in a simple, accessible field guide for county engineers.
“When most studies end, further research is needed. This project, however, created a user guide that local engineers can use right away to repair destabilized slopes,” said Blake Nelson, Geotechnologies Engineer, MnDOT Office of Materials and Road Research.
“This guide includes an easy-to-use flowchart that steers local engineers toward an appropriate slope stabilization technique,” said David Saftner, Assistant Professor, University of Minnesota Duluth Department of Civil Engineering.
What Was the Need?
Winter weather and spring storms leave their mark on slopes along highways and at bridges. Erosion and other forces cut gashes and ravines into slopes. Some damage such as failing pavement at shoulders or sloughed off sections of a slope can be obvious to road users. Other, more subtle signs of creeping embankments may only catch the attention of engineers.
Slope failures must be repaired to prevent damage to roadways and embankments. When slope damage is severe, a geotechnical engineering firm must step in at some expense. By the time the first soil sample bore is pulled, county engineering departments may already be facing a bill of $20,000. But when damage is less severe, the county can often stabilize the slope using local materials and simple techniques.
Determining whether slope damage can be completed by local engineers or requires outside help remains a challenge for county road departments that often lack geotechnical expertise.
What Was Our Goal?
The Local Road Research Board (LRRB) funded a research project to determine effective methods for stabilizing damaged roadway slopes. These methods would be incorporated in a guide that local engineers could use to identify the type of slope failure and then select an appropriate repair method.
What Did We Do?
Investigators began by surveying Minnesota county engineering departments to identify sites that needed to be stabilized. Local engineers also provided details about both successful and unsuccessful stabilization methods that have been tried in the past. The re-search team inspected 14 destabilized sites identified in this effort and took soil samples from each site.
Then they conducted a literature review of slope stabilization methods, identifying 12 stabilization techniques. Based on this review, researchers tested the soil samples with direct shear tests to identify shear strength parameters such as effective friction angle and cohesion. They ran soil classification tests to measure plasticity, granularity and gradation, and moisture content. These properties were then used as inputs in slope modeling and parametric studies to examine viable repair techniques for each site.
Investigators summarized their analysis of each case and documented stabilization methods that would meet the needs identified in the case studies. Finally, the research team prepared a slope stabilization guide that local engineers could use in the field to identify the type of slope failure and the appropriate solution.
What Did We Learn?
Five of the destabilized sites featured primarily sandy soil, eight had fine-grained soil, and one was rocky. Slope failure was visible at nine of the sites. Groundwater management figured prominently in most sites and repairs.
The literature search identified approaches for specific types of failures. Managing groundwater and drainage improves shear strength in slide-prone areas; surface covers protect slopes from erosion; vegetation and plant roots stabilize soil; excavation and regrading reduce failure forces; and structural reinforcement features directly support slope materials.
Investigators identified eight slope failure mechanisms that encompassed the full range of destabilization scenarios presented in the case studies. Each method had been identified in survey responses as a technique used successfully at the local level. The site conditions that contributed to the failure were identified along with a repair solution for each failure type.
Using the findings from this project, researchers created a slope stabilization guide for Minnesota local government engineers. This field guide describes common slope failures and conditions that may contribute to each. It includes a simple, three-step flowchart that guides engineers to the appropriate repair technique by determining whether the damage is a creep or rotational failure, whether the soil is cohesive or granular, and if there are groundwater concerns.
Based on engineers’ answers, the flowchart directs them to one or more of the eight slope stabilization techniques, providing photographs and repair methods that have been successful in addressing slope problems along Minnesota roadways.
What’s Next?
The Slope Stabilization Guide for Minnesota Local Government Engineers will be sent to each of the 87 county engineering departments. Local engineers can keep the guide on hand when they investigate slope failures along their roadways, and with it quickly identify what work needs to be done to repair the damage.
This project dovetails with two ongoing MnDOT research efforts, Slope Failure Risk Analysis and MnDOT Slope Vulnerability Assessments.
For more related research, see the Protecting Roads From Flood Damage page on the MnDOT Research Services website.
This post pertains to the LRRB-produced Report 2017-17, “Slope Stabilization and Repair Solutions for Local Government Engineers,” and Report 2017-17G, “Slope Stabilization Guide for Minnesota Local Government Engineers,” both published June 2017.
New recommendations aim to help roadside turfgrass thrive
Keeping Minnesota’s roadsides green is about more than just aesthetics—healthy turfgrass can improve water quality, reduce erosion and road noise, and provide animal habitat. However, harsh conditions such as heat, drought, and salt use can make it difficult for roadside turfgrass to thrive.
In 2014, as part of a study funded by the Minnesota Local Road Research Board (LRRB), researchers in the University of Minnesota’s Department of Horticultural Science identified a new salt-tolerant turfgrass mixture that could be used on Minnesota roadsides. But, when MnDOT began using the mixture, called MNST-12, the agency experienced a series of installation failures.
Now, led by Professor Eric Watkins, the research team has identified new best management practices for installing and establishing this type of salt-tolerant turfgrass. The study, funded by the LRRB, specifically focused on watering practices, soil amendments, and planting date for both seed and sod.
“Newer improved seed or sod mixes like MNST-12 may have differing requirements for successful establishment compared to other species or cultivars that contractors and other turf professionals are more familiar with,” Watkins says. “Since all of these management practices are prescribed—or not prescribed—in the MnDOT specifications, generating data that can inform future specifications is a valuable outcome of this work.”
The study, which was conducted over several years, included experiments on how water should be applied to new MNST-12 turfgrass installations, the use of soil amendments at the time of establishment, and the effect of the seeding or sodding date on the success of a new planting.
Based on their findings, the researchers recommend these changes to MnDOT specifications:
- No soil amendments are necessary, but adequate seedbed preparation is important.
- Seeding is preferred to sodding between August 15 and September 15.
- Sodding can be permitted throughout the year, but only if the installer is able to supply frequent irrigation.
- When watering in sod, attention should be given to the species being used and local rates of evapotranspiration (evaporation from both the soil and plant leaves). Sod installers can anticipate using between 100,000 and 170,000 gallons of water per acre to ensure a successful establishment.
- Sod can be mowed as soon as sufficient root growth prevents an operator from manually pulling up pieces by hand, but it should not be mowed if wilting from heat or drought.
Currently, the researchers are using the results of this project to develop methods for educating and training stakeholders, including turfgrass installers, on these best management practices. They are also developing systems that could be used by installers in the field to help maximize the success rate of turfgrass installations.
“These best management practices can help limit installation failures and reduce maintenance inputs for future installations, providing both an economic and environmental benefit,” Watkins says.
“The knowledge and improved specifications we gained through this research will allow us to make our contractors more successful, which makes MnDOT successful,” says Dwayne Stenlund, MnDOT erosion control specialist. Because local agencies often rely on these MnDOT specifications as a guide for their projects, they will also benefit from the improved practices.
Stenlund also says the new specifications—especially those related to watering requirements—could allow for a clearer understanding of the true cost and value of turfgrass installation and maintenance work, which could ultimately improve the accuracy of the project bidding process.
In another project, the research team is exploring other turfgrass stresses, such as ice cover and heat. They are also testing additional turfgrass species and mixtures in an effort to continue improving MnDOT specifications for roadside turfgrass installations.