All posts by mndotresearch

MnDOT’s Smart Bridge Sensors Are Leveraged to Measure Vertical Displacement

A Minnesota Department of Transportation research study has developed a new method for estimating vertical displacements on bridges using accelerometers installed on the Interstate 35W St. Anthony Falls Bridge in Minneapolis. The dual-model approach shows potential for using these sensors to measure vertical displacement on steel, cable-stayed and other less-stiff bridges where traffic generates higher vibration frequencies. The method expands the industry’s knowledge of how to use smart sensors in new ways.

What Was the Need?

Since September 2008, the I-35W St. Anthony Falls Bridge has carried traffic over the Mississippi River in Minneapolis and funneled sensor data to researchers and MnDOT bridge engineers. This smart bridge features over 500 sensors that monitor strain, load distribution, temperature, bridge movement, and other forces and functions.

Sensors help designers and bridge managers learn more about how bridges shift and flex over time. Concrete expands and contracts, and bearings shift; sensor systems continuously gather data about these minute changes, offering an alternative to time-consuming inspection.

Sensors attached to a steel beam to study vibrations in a laboratory.
Sensors attached to a steel beam to study vibrations in a laboratory.

Researchers continue to identify potential uses for sensor data and new ways to use such information to analyze bridge properties and performance. In a 2017 study about monitoring bridge health, researchers learned to distinguish and associate specific vibration frequencies with structural damage, weather conditions and other factors. These frequencies were gathered by accelerometers, which measure structural vibrations triggered by traffic and environmental conditions.

Decks, piers and other structural elements displace vertically under loads and environmental conditions. Researchers and bridge managers wanted to know if accelerometers could be used to measure vertical displacements and help monitor bridge health.

What Was Our Goal?

MnDOT needed a procedure for measuring and monitoring vertical displacement on bridges under traffic and environmental forces. Investigators would use the sensor systems on the I-35W St. Anthony Falls Bridge to design and analyze this procedure.

“We need to learn more about sensors because we don’t have a lot of experience with them. This study gave us valuable information about accelerometers and the information they provide,” said Benjamin Jilk, Complex Analysis and Modeling Design Leader, MnDOT Bridge Office.

What Did We Do?

Indirect analysis and measurement of vertical displacements rely on estimations obtained through modeling. Investigators evaluated the most well-developed approach for measuring vibration frequencies like those tracked by accelerometers and refined the method. The team developed a dual-model approach: One model estimates loads and the other estimates displacements.

In a laboratory, investigators evaluated the impact of loading on displacement and vibration frequencies on a girder with contact sensors and accelerometers under moving and stationary loads. Researchers applied the dual-model analysis to laboratory displacement readings to compare the effectiveness of the model with contact sensor responses to loading.

Using laboratory data, investigators tuned the dual-model approach to accelerometer data available from the I-35W St. Anthony Falls Bridge. The research team then applied its identified tuning approach to the data from the bridge’s 26 accelerometers to determine the procedure’s suitability for estimating vertical displacement from vibration response on this bridge and its potential for other structures in the MnDOT bridge system.

New Project: Extreme Flood Risks to Minnesota Bridges and Culverts

Extreme flooding is a threat to Minnesota’s transportation infrastructure and the safety and economic vitality of its communities. A spate of recent flooding events around the state has demonstrated this and heightened the level of concern. Furthermore, climate change — a factor not traditionally accounted for in the design of the state’s infrastructure — is projected to enhance precipitation and the threat of flooding in coming decades.

Given this, MnDOT is undertaking an effort to better predict the threat flooding poses to its bridges, large culverts and pipes, which may be increasingly called upon to convey higher, more frequent flood flows than they were designed for.

The state transportation research program recently launched a two-year extreme flood vulnerability analysis study, which will develop a methodology for characterizing the vulnerability of the state’s bridges, large culverts, and pipes to flooding.

The effort builds upon the previously completed Flash Flood Vulnerability and Adaptation Assessment Pilot Project (2014), which scored bridges, large culverts, and pipes in MnDOT Districts 1 and 6 for flood vulnerability, allowing detailed assessments of adaptation options for each of their facilities to be prioritized.

This new study, which will be conducted by WSP, aims to develop and test ways to enhance the vulnerability scoring techniques used in the previous study and ensure their applicability throughout the state. Researchers will not actually undertake the statewide assessment, but specify an approach that could be used for it. They will also explore how the outputs of the analysis can be incorporated into MnDOT’s asset management systems. The results of this work will be a clear path forward for MnDOT to use for prioritizing adaptation actions — a key step towards enhancing agency resilience and maintaining good fiscal stewardship.

Project scope

The primary intent of this study is to develop a methodology for characterizing the flood vulnerability of bridges, large culverts, and pipes statewide. As part of the development process, the methodology will be tested on a limited, but diverse, set of assets across the state. Following a successful proof of concept, recommendations will be made on how the outputs (i.e., the vulnerability scores) can be incorporated into the state’s asset management systems.

By determining which facilities are most vulnerable to flooding through the techniques developed on this project, MnDOT can prioritize where adaptation measures will make the biggest impact, ultimately decreasing asset life-cycle and road user costs. Without the development of assessment techniques, adaptation measures run the risk of being implemented in a more reactive and/or ad-hoc fashion, with less regard to where the biggest “bang for the buck” can be realized.

This project will produce several technical memorandums, and is expected to be completed in early 2021.

Culvert Design Manual Provides Guidance for Accommodating Fish Passage

Several years of research have culminated in the publication of a culvert design manual that promotes the safe passage of fish and other aquatic organisms, as well as stream connectivity, throughout the state.

“Engineers designing culverts for Minnesota’s diverse ecological regions will benefit from this document, which offers sound guidance from many practicing experts about how to design culverts that allow aquatic organism passage and preserve stream integrity,” said Petra DeWall, former Bridge Waterway Engineer, Minnesota Department of Transportation (MnDOT).

What Was the Need?

Minnesota’s 140,000 miles of roads and approximately 92,000 miles of streams and rivers meet at tens of thousands of places. Culverts are a cost-effective solution to allow traffic to cross over smaller waterways. Historically, culverts have been designed with the safe passage of vehicles in mind. Recently, a state and national appeal for the safe passage of fish and other aquatic organisms, as well as for waterway integrity and connectivity, has influenced culvert design.

A pair of Topeka shiner fish
The Topeka shiner, once found throughout the state, is one species of federally endangered fish in Minnesota that must traverse culverts to survive.

MnDOT has supported many research projects examining fish and aquatic organism passage (AOP) through culverts, and nationally, a number of published resources exist on appropriate design. Because of the variety of ecological regions in the state, the range of culvert geometries and many other factors, no single solution can accommodate AOP through culverts statewide. A comprehensive culvert design guide was needed to inform designers about solutions that can effectively facilitate the movement of fish and other aquatic organisms in Minnesota while maintaining healthy streams.

What Was Our Goal?

The objective of this project was to produce a comprehensive and accessible culvert design guide that could be used by Minnesota practitioners to design culverts for AOP and stream connectivity. The guide would provide the following benefits:

• More efficient culvert design and permitting process for AOP.
• A central definition of typical designs, which would improve contractors’ familiarity with designs and lower construction costs.
• Avoidance of designs that could be detrimental to the natural environment.
• Avoidance of designs likely to lead to roadway damage and need for repairs.
• Fishery improvement through increased stream connectivity.

What Did We Do?

To determine the scope of the guide, researchers worked with experts from the Minnesota Department of Natural Resources (DNR), the U.S. Forest Service and others with knowledge of civil engineering, AOP and stream geomorphology.

They then sought information for the guide from a wide range of authoritative resources. A literature search examined current and past research by the research team and others; guidance documents from federal agencies; guidance from other states; permit requirements from the DNR and other agencies; and databases of fish populations, stream attributes and culvert data. The literature search also sought to reveal gaps in knowledge where further research specific to Minnesota was needed.

Additionally, researchers surveyed a cross section of highway design engineers and managers from MnDOT, county and city agencies, resource agencies and engineering consultants to identify current design practices for AOP and stream connectivity, and the degree of their effectiveness.

What Did We Learn?

The project resulted in the Minnesota Guide for Stream Connectivity and Aquatic Organism Passage Through Culverts, a thorough guide for culvert designers, hydraulic engineers and others involved in culvert design and construction in Minnesota. Topics addressed in the guide include:

• The need for culvert designs that include AOP and stream connectivity, as well as the current regulatory context.
• An overview of culvert design, categories of design methods that incorporate AOP and waterway connectivity, and a list of best practices.
• Site characteristics, analysis and tools related to energy dissipation, hydraulic analysis for AOP and sediment transport.
• A design method selection chart, information on certain designs and references for further information.
• Further guidance about design issues such as multiple barrel and floodplain culverts, grade control, retrofits and other cost considerations.

What’s Next?

The culvert design guide will be made available to users online. Future considerations for this project include an associated webinar and efforts to coordinate information presented in the guide with expectations and permitting requirements of MnDOT departments charged with culvert creation and implementation. Additional research is underway to assess culverts and fish passage with respect to storm vulnerability and future hydrologic scenarios.

This post pertains to the MnDOT and LRRB-produced Report 2019-02, “Minnesota Guide for Stream Connectivity and Aquatic Organism Passage Through Culverts,” published January 2019.

Affordable GPS-Based System Warns Drivers About Lane Departures, Approaching Curves

Researchers have developed an affordable camera-free curve and lane departure warning system that relies on consumer-level GPS, rather than sophisticated, expensive digital maps.

The technology uses cumulative driving trajectory data from GPS points detected every 100 milliseconds to predict driving path trajectories and compare these to mapped curves and lanes. With further development, the system can be used as an inexpensive smartphone app or retail device to warn drivers of lane drift and approaching curves.

“The goal of the project is to reduce lane departure crashes. We viewed this as a seed project and demonstrated that the system can be successful,” said Victor Lund, Traffic Engineer, St. Louis County.

What Was Our Goal?

The Minnesota Local Road Research Board sought research to develop a camera-free curve and lane departure warning system that uses consumer-level GPS capability without reliance on sophisticated, expensive digital maps.

What Was the Need?

Lane departures and run-off-road crashes cause more fatalities and serious injuries in Minnesota than any other accident type.

Many current warning technologies rely on cameras that identify lane position based on pavement markings. In inclement weather, stripes and pavement markings can be difficult or impossible to identify; markings also wear off over time, reducing visibility even in clear conditions. Camera-based lane departure warning systems are also expensive and generally restricted to newer luxury vehicles, making them inaccessible to the general driving public.

Though in-vehicle technology for the public usually falls outside the research interests of the Minnesota Department of Transportation and the Minnesota Local Road Research Board, the agencies have been funding development of lane departure warning technologies to improve driver safety. GPS technologies offer an intriguing path to consumer-level lane departure warning systems.

High-level GPS can be accurate to the centimeter level, but access is restricted and use is expensive. These systems also rely on accurate, lane-level roadway mapping, an elusive data set with high access costs.

What Did We Do?

Researchers began with a literature search of the uses of standard GPS receivers in lane departure and navigation. The research team then developed an algorithm for travel direction that uses standard GPS in a straight road lane departure system to determine driving trajectories at accuracy levels suited to safe driving needs.

Investigators adapted a publicly available digital mapping platform to the same algorithm to identify navigational points along curves and develop the curve lane departure warning system. The team enhanced standard safe distance methods to consider driver reaction time in determining when approach warnings should be issued.

Researchers then brought the two developmental stages of the system together with a warning system that identifies vehicle speed, curvature characteristics and safe speed limits, and calculates distance for driver response times to issue an audible warning to drivers on lane drift and a text warning of when and how much to reduce speed as the vehicle approaches a curve.

Two figures, each with a photo of a road segment an a graph that plots roadway curve distances with warning times.
The advanced curve warning system issued audible lane departure warnings when cumulative trajectories showed lateral drift within a curve.

For project testing and demonstration, investigators programmed the algorithm into a device with a built-in GPS receiver, connected it to a laptop for messaging and conducted driving tests on Rice Lake Road and on Interstate 35 near Duluth.

“From a technical point of view, this approach works. We developed a warning system with standard GPS that everyone has in a phone or vehicle. This is a lifesaving technology in a sense,” said Imran Hayee, Professor, University of Minnesota Duluth Department of Electrical Engineering.

What Did We Learn?

Finding no research on development of consumer-grade GPS for lane departure purposes, the research team adapted previous work on the relative accuracy of GPS readings from a MnDOT study on wearable GPS for work zone safety.

Researchers adapted a consumer-level GPS device to acquire data at 10-hertz frequency, which yields a GPS position point of 2.7 meters if a vehicle is driven at 60 mph.

The system calculates lane trajectory from cumulative readings and detects turns or drift. The curve warning system plots trajectories and compares these with open-source digital maps with road-level (rather than lane-level) accuracy to anticipate curves.

Illustrations show how the warning system uses shape points from maps with driving path averages to determine lane departures.

In road testing, the system issued audio warnings for every one of the approximately 200 lane changes, including curves. For curve warnings, the system scanned for curves at least half a mile ahead and calculated the vehicle’s speed and the distance to a curve to issue a timely text warning of the curve ahead and an advisory speed limit. Additional messages were issued when the vehicle was on the curve and when the curve had ended.

False alarms—warnings issued when the vehicle was not departing its lane—occurred in 10 percent of the tests, usually on sharp curves. Further adjustment of the algorithm and additional testing reduced false alarms significantly as the system accumulated data over multiple uses of the same roadway.

What’s Next?

Investigators filed a patent for the technology and will continue to develop the system. Further refinement of reference road direction information will improve accuracy and safety; the research team has developed a new project to employ vehicle-to-vehicle dedicated short-range communication technology to expand road direction reference data. The system will then need to be adapted for a consumer-level device or a smartphone app for use in any vehicle.

This post pertains to the LRRB-produced Report 2018-34, “Development and Demonstration of a Cost-Effective In-Vehicle Lane Departure and Advanced Curve Speed Warning System,” published December 2018.

 

New Resource for Using Cone Penetration Testing in Geotechnical Design

Designing foundations for bridges and pavements requires understanding the soil conditions and properties at the site. One of the best methods for calculating site conditions is the cone penetration test (CPT), in which a rod with a cone-shaped tip outfitted with sensors is driven into the soil. Engineers attach more rods to the first as the device is gradually driven to depths of 30 to 150 feet.

Researchers have developed a new manual to show geotechnical engineers how to conduct the CPT and use the data it gathers. The guide walks engineers through the process of CPT-based foundation design for sand and clay soils in deep and shallow foundations, helping engineers put the best technology to use.

A supplement to the Minnesota Department of Transportation’s Geotechnical Engineering Manual, this resource will provide improved methods for using CPT data in geotechnical design.

What Was the Need?

Designs for new bridges and structures require geotechnical investigation of a site’s soil conditions to evaluate the strength, settlement and drainage of a proposed foundation. Common design procedures rely on boring samples from the site and on standard penetration tests (SPT), which entail driving a weighted steel rod into the soil and recording the number of blows it takes to drive the rod a specified distance. Using lab analysis of samples and on-site tests, engineers determine foundation properties for the new design.

The cone penetration test (CPT) has become an attractive alternative to the SPT. CPT employs a probe with a cone-shaped tip outfitted internally with various sensors. Equipment in a CPT truck pushes the probe into the soil at the site; engineers attach rod sections behind the probe to continue pushing it in the soil to the desired investigation depth, which is usually 30 to 150 feet for transportation projects. Standard sensors allow the CPT to directly measure tip stress, pore water pressure and soil resistance; other parameters can be measured with additional sensors.

“One of the biggest impediments to deploying cone penetration testing more widely has been the lack of a practical document that integrates the latest findings and best approaches, and puts that information to use,” said Derrick Dasenbrock,
Geomechanics/LRFD Engineer, MnDOT Office of Materials and Road Research.

The CPT safely and efficiently produces accurate data and repeatable results, yet relatively few engineers in the United States know how to employ these tests and use the data for geotechnical design inputs. Users can search geotechnical engineering resources to learn how CPT results can be applied, but no standard procedure or manual is widely available for transportation projects.

cone penetration vehicle along roadway
Cone penetration testing can be conducted safely from inside a truck container alongside a highway.

What Was Our Goal?

Investigators sought to develop a new CPT design guide based on the most current CPT in situ testing research and development. The guide is intended for use in evaluating the performance of proposed bridges and structures, embankments and roadway features.

What Did We Implement?

The research team produced the 2018 CPT Design Guide for State Geotechnical Engineers, with step-by-step instructions for using the CPT to evaluate soil properties at sites and to design shallow footings and deep foundations. The document provides an overview of the CPT, its use in analyzing and characterizing soils, background on computing engineering parameters derived from CPT measurements, and detailed procedures for using those parameters to design and analyze shallow and deep foundations. Also included are derivation background, case studies and examples to help guide the user through the design process.

How Did We Do It?

Investigators began by reviewing guidelines for geotechnical engineering design based on CPT methods. The research team identified the key soil properties measurable by the CPT that are required for designing shallow and deep foundations. Then team members evaluated numerous CPT-based methods used for shallow foundations and over 40 use for deep foundations. Using the results of this evaluation, investigators identified methods with sufficiently robust and reliable performance that could be easily implemented by design engineers.

The team used CPT data from MnDOT geotechnical site investigations and developed short design case studies applying the recommended CPT design methods. After reviewing the CPT procedures with the Technical Advisory Panel, investigators organized design modules for soil characterization, shallow foundations and deep foundations, and documented the process in the design guide.

What Was the Impact?

The new guide is based on the current best practices for the CPT and was developed to establish MnDOT’s geotechnical design process while accommodating ongoing research. The guide presents recommended design methods and offers step-by-step instruction on how to calculate engineering parameters from CPT measurements and apply those design inputs to efficiently design foundation systems. Examples of problems and solutions are provided in the context of Minnesota cases, although the techniques are broadly applicable.

“Engineers can start using this design guide immediately in Minnesota—and elsewhere. The format is adaptable; California could add another module about earthquakes, for instance,” said David Saftner, Associate Professor, University of Minnesota Duluth Department of Civil Engineering.

The guide begins with a focus on characterizing soil properties from CPT measurements, providing an example for both sand and clay soils. The shallow foundation design module describes how to determine strength and soil settlement characteristics from CPT sensor readings using a method based on 166 full-scale field load tests. The deep foundation design module explains how to use the CPT to determine the required axial compression capacity of piling from a method based on 330 pile load tests.

What’s Next?

The guide is a much-needed resource for geotechnical engineers both within MnDOT and outside of the agency. The improved methods for using CPT data will encourage more frequent and widespread use of the method, improving the quality and reducing the time and cost of site investigations.

Available on MnDOT’s Geotechnical Engineering website as a supplement to the 2019 revision to the Geotechnical Engineering Manual, the guide will also be shared with a Federal Highway Administration CPT users group. Future considerations for the guide include a module on characterizing peat in organic soils and on seismic soil analysis.

This post pertains to Report 2018-32, “Cone Penetration Test Design Guide for State Geotechnical Engineers,” published November 2018.

New System Measures Travel-Time Reliability to Reduce Traffic Delays

Researchers for the Minnesota Department of Transportation have developed a new travel-time reliability measurement system that automates the process of gathering and managing data from multiple sources, including traffic, weather and accident databases, to generate travel-time reliability measures and reports for the metropolitan freeway network.

What Was the Need?

Improving traffic efficiency has become a key goal of traffic operations managers. In heavy traffic periods, MnDOT’s Regional Transportation Management Center (RTMC) coordinates with Minnesota State Patrol and MnDOT Maintenance Services to detect and quickly respond to freeway incidents in the Twin Cities. The RTMC works with the Freeway Incident Response Safety Team to assist and remove stranded vehicles using MnDOT emergency road service trucks. RTMC also updates real-time road condition information on its 511 traveler information system.

Overhead view of RTMC operator monitoring multiple screens
RTMC engineers use travel-time reliability data to plan for and respond to accidents, event traffic,
bad weather and road construction that cause freeway congestion.

MnDOT and RTMC measure delay and congestion on the metropolitan freeway system, reporting the data in annual reports like the 2017 Congestion Report. While useful, this data offers little predictive value on its own. MnDOT’s metropolitan freeway system features 4,000 loop detectors that transmit traffic data every 30 seconds; this data informs the congestion and delay reports.

Correlating this data with locations on the freeway system and various operating conditions, such as weather and traffic incidents, is time- consuming. But the data could be used to systematically evaluate traffic delays and develop strategies to mitigate congestion.

What Was Our Goal?

In this project, investigators sought to develop a system for automatically accessing weather, crash and traffic data to assess travel-time reliability—the variability in travel times for any given route. Travel-time reliability measures are becoming the key indicators for transportation system operations and management.

What Did We Implement?

Investigators developed a new travel-time reliability measurement system (TTRMS) that integrates different types of data (such as weather, traffic, incident, work zone and special event) acquired from multiple sources and automatically produces various types of travel-time reliability measures for selected corridors following user-specified operating conditions and time periods.

“Travel-time reliability is another way of looking at congestion and at strategies for making it more tolerable. It used to take several hours, even days, to process travel-time reliability data. The TTRMS processes it in minutes,” said Brian Kary, Director, MnDOT Regional Transportation Management Center.

How Did We Do It?

Investigators began by developing a detailed design of the TTRMS architecture—its modules, their functions and their interactions. The team then developed a work-zone data input module, where detailed lane configurations of a given work zone can be specified.

Developers designed a travel-time reliability calculation module as the core of the new system that can automatically access MnDOT’s traffic data archive, its incident database and the National Oceanic and Atmospheric Administration’s weather database. It can also accept a set of input data for work zones, such as lane-closure periods and locations. The reliability calculation module was then integrated with user interfaces and reporting modules. Finally the integrated system was tested with the real data gathered in 2012 and 2013 from Interstates 35E and 35W, U.S. Highway 169 and State Highway 100.

What Was the Impact?

The system generated accurate travel-time reliability measures for the test periods and given operating conditions. In particular, the output measures were automatically generated in both table and graphical formats, thus saving traffic engineers significant amount of time and effort.

The TTRMS includes map-based interfaces, which provide administrators and general users with substantial flexibility in defining corridors, specifying operating conditions and selecting types of measures depending on the purposes of applications.

To test the new system’s performance, the research team used the TTRMS to evaluate traffic strategies deployed for the February 2018 Super Bowl in Minneapolis. Two weeks before the event, reliability was low for the freeway system serving the football stadium. During the week of the Super Bowl, MnDOT and the Department of Public Safety aggressively managed traffic incidents to keep traffic moving, and reliability rose substantially despite the increase in tourist traffic. In the days immediately after the Super Bowl, operational strategies returned to normal levels, and reliability fell to previous levels. Results suggest that aggressive incident management during this exceptionally high-volume regional event enhanced traffic efficiency.

What’s Next?

Further enhancements to the TTRMS should include automating inputs for work zone data, such as lane closures, changes in work zone locations and time periods. Future research could help traffic operations prioritize resources and develop short-term and long-term freeway improvements, including studies of bottlenecks and the freeway network’s vulnerability and resilience for natural events and large-scale incidents.

This post pertains to Report 2018-28, “Development of a Travel-Time Reliability Measurement System,” published September 2018.

 

Roadmap created for rollout of unified OSOW permitting

The second phase is nearing completion for a project aimed at creating a Unified Permitting Process (UPP) for oversize/overweight (OSOW) vehicles in Minnesota. One outcome of this phase is a roadmap that will define steps for future phases, including statewide implementation.

Currently, haulers need to apply for OSOW permits with each individual roadway authority they will travel through. MnDOT, counties, townships, and cities all administer permits for their own roadways—so several different permit applications and processes can be required for a single haul.

“The streamlined permitting process is expected to increase efficiencies for the freight industry, which is good for our economy,” says Clark Moe, systems coordinator with MnDOT’s Operations Division, Office of Maintenance. “It will also enable more effective enforcement and help us preserve the quality of our road network.”

Through the UPP, agencies should have a better idea of what’s happening on their roads, says Rich Sanders, county engineer for Polk County. “Throughout the state, there are a lot of hauls we don’t even know about, let alone if they will use a restricted bridge or road.”

UPP Phases I and II

Phase I of the UPP project examined the feasibility of implementing a permitting platform. Completed in 2017, this phase included listening sessions across the state with the hauling industry, local agency engineers, law enforcement, state agencies, and MnDOT staff. Eighteen public and private entities collaborated to develop policies, processes, and plans for UPP technology. The final report concluded that a reference platform system for processing permit applications would be the best approach to explore.

Technical Schematic of a Reference Platform. The permitting platform will connect various software and data sources
The permitting platform will connect various software and data sources

Phase II was a proof-of-concept pilot project spanning St. Louis County, Polk County, the City of Duluth, and MnDOT Districts 1 and 2. The goal was to see if a permitting platform would work across jurisdictions connecting various permitting software and using multiple system processes. “The platform has to be usable in different ways and be able to channel payment back to MnDOT or a county or city,” Sanders says. “Phase II showed UPP could work.”

Phase II also underscored the complexity of the issues to come. “The vision is for haulers to enter their license data, and the required permit data would automatically populate the permit,” says Mitch Rasmussen, assistant commissioner with MnDOT State Aid. “But all kinds of software systems are now in use by local agencies, and MnDOT’s Office of Freight and Commercial Vehicle Operation is preparing to replace the two online systems it’s been using for decades. All the systems will need to talk to the unified platform. It will take time and money to build. The roadmap from Phase II can help us get there.”

Policy and fee differences are another challenge. To gather context and ideas, MnDOT recently completed a Transportation Research Synthesis to explore the practices of other state transportation agencies in setting, collecting, and distributing permit fees for heavy commercial OSOW vehicles (see related article). Another MnDOT study is under way to gather basic data about the permit fee policies of counties in Minnesota and throughout the country, including authority for the fees, cost range, and fee types.

When Polk County switched from a paper system to an electronic one, industry started applying for permits more consistently, Sanders says. With the paper system, five or six permit applications would be faxed in each year, and approval could take two days. But with its online system, the county received 201 applications between January 1 and October 26, 2018. “Approval might take us 30 seconds,” he notes.

UPP work to date has been funded by MnDOT and the Minnesota Local Road Research Board. Others involved include the Federal Highway Administration, state agencies (Minnesota Department of Public Safety, Driver and Vehicle Services, Minnesota State Patrol, Minnesota IT Services Geospatial Information Office), associations (Minnesota Association of Townships, Minnesota County Engineers Association, Associated General Contractors of America), private businesses (ProWest, SRF Consulting, Midstate Reclamation & Trucking, Tiller Corporation), and educational institutions (Upper Great Plains Transportation Institute, NDSU; Alexandria Technical & Community College). UPP Phases I & II were a unique collaborative public-private partnership to resolve a long-standing problem.

Next phases and final outcome

Moving forward, Phase III will begin development of the unified system using real data from multiple road authorities and databases in MnDOT Districts 1 and 2. Phase IV will take the platform beyond Districts 1 and 2 and roll out the system for testing statewide. Estimated completion is two to three years.

“Under current plans for the unified system, Minnesota road authorities will continue to set their own fees and may be able to connect their existing software, although some interoperable adaptations will be needed,” Moe says. “The new permitting process will focus on education for haulers, permitting agencies, and the public, as well as engineering decisions by agencies. This, in turn, will lead to increased enforcement effectiveness to help preserve road quality while boosting the economy.”

“Many decisions are still on tap,” Rasmussen adds. “There’s no decision yet of who’s going to own it and manage it, for example, or what fees might be recommended. There are a million moving parts, and many agencies and interests are involved. But we’re taking big strides toward our central goal: putting the right load on the right road, the right way, right away.”

This article by Pam Snopl originally appeared in the December issue of the Minnesota LTAP Technology Exchange newsletter.

Modeling Demonstrates Benefit of Geogrid-Reinforced Aggregate Base

Improved modeling of geogrid for use with MnDOT’s pavement design software, MnPAVE Flexible, will allow pavement designers to simulate field tests of stiffness and resiliency in pavements over bases with and without geogrid. MnDOT is using modeling results from a recent study to develop a design input that quantifies the benefit of geogrid in terms of pavement service life and aggregate thickness.

“This innovative study will be especially beneficial for designs in areas with poor subgrade. We worked closely with the geogrid manufacturer to develop codes that accurately simulate geogrid behavior in a pavement,”  said Bruce Tanquist, Pavement Computer Applications Engineer, MnDOT Office of Pavement Design.

What Was the Need?

Many highways in Minnesota are built upon soft subgrades. These weak subgrades lower the roadway pavement life. In the past, timber and cement have been used to stiffen pavement foundations with mixed success. However, for the last 20 years, geogrids have been shown to be a beneficial and cost-effective method to stiffen the existing pavement structure.

Geogrid is a stiff polymer webbing with apertures that interlock with aggregate in the base. The material is placed within the new or reclaimed aggregate base, usually two-thirds the distance from the top of the base. After the remaining aggregate is placed, the road is paved with either asphalt or concrete.

rectangular shaped geogrid
Simple, rectangular-shaped geogrid stabilizes aggregate and improves pavement resiliency.

Geogrid increases the stiffness of the aggregate base layer by locking aggregate in place for improved resilience. Though the benefit of geogrid has been observed in the past, it was not quantified for pavement design purposes, and designers were not able to include the properties in their calculations when designing a pavement. Geogrid was sometimes seen as an extra expense with no calculated benefit.

A 2016 study was also tasked to quantify the benefits of geogrid in mechanistic design, but deflection testing results were inconclusive and did not support a reliable design factor for geogrid use in aggregate base.

What Was Our Goal?

MnDOT pavement designers requested a model to show how using geogrid in the roadway base impacted pavement life. Researchers used new software to evaluate geogrid behavior in different design permutations and to quantify its benefit to pavement performance using MnDOT’s pavement design software, MnPAVE Flexible.

What Did We Do?

The updated software was used to expand the geogrid modeling capability and test modeled nonreinforced and geogrid-reinforced bases. Research began by identifying geogrid parameters useful in modeling and as inputs to MnPAVE. Investigators worked with a geogrid manufacturer to specify and code the physical characteristics and properties of triaxial geogrid (with triangular-shaped apertures) used in the field for modeling.

Researchers then worked closely with a software developer to refine modeling capabilities, expanding on previous work that focused on biaxial geogrid (with rectangular-shaped apertures) to include triaxial geogrid, and to model behavior of geogrids in variable parameters for geogrid and aggregate.

Geogrid and aggregate models were tested extensively, adjusting geogrid and aggregate characteristics and simulating dynamic cone penetrometer (DCP) and light weight deflectometer (LWD) tests. Researchers collected numerical modeling results on geogridand aggregate performance to use with MnPAVE design software and to develop design factors that quantify the impact of geogrid on pavement performance.

What Did We Learn?

Field testing from previous research was insufficiently detailed because it did not include specific pavement structure and subgrade conditions below each deflection-tested location. Additionally, lab testing, which evaluated geogrids by testing their behavior within 6-inch by 12-inch cylinders, did not correlate well with the dimensions and shapes of field geogrid installations.

Effective modeling aids in quantifying the benefits of geogrids. The modeling developed in this research effectively began to bridge the gap between field and lab examination by testing forces in 1-foot-square models with 4- to 12-inch aggregate thicknesses, which is more appropriate for estimating geogrid and aggregate behavior in the field.

“We were asked to quantify the benefit of geogrid. It is important to keep the aggregate layer thick for benefits like drainage, so it’s important to know that we were getting extra years of life with geogrid-reinforced aggregate base,”  John Siekmeier, Research Engineer, MnDOT Office of Materials and Road Research.

New modeling capabilities allow testing of various parameters, including geogrid aperture dimensions and configurations, the thickness and shape of geogrid ribs, aggregate roughness and gradation, and moisture content. Test simulations of geogrid and aggregate configurations run for hours or days, and model a wide range of behaviors to capture reliable data from DCP and LWD tests of stiffness, resilience, and strength of bases with and without geogrids.

Test results showed that depending on moisture content and the time of year, bases reinforced with geogrids offer 1.5 to 2.5 times the resiliency under loading compared to nongeogrid-reinforced bases.

What’s Next?

Investigators are working with MnDOT designers to codify a geogrid factor in MnPAVE that determines the improved service life or the aggregate thickness equivalent that geogrid provides to aggregate bases in pavements. The geogrid factor could be incorporated early in 2019.

Further research could include comparing modeling results to LWD and DCP field test results of new pavements with geogrid-reinforced aggregate bases. Such implementation and site testing could continue with new pavement installations to collect data to confirm or calibrate geogrid design factors and geogrid modeling for MnPAVE.

This post pertains to Report 2018-30, “Performance Specification for Geogrid Reinforced Aggregate Base,” published October 2018.

Selecting Structural Synthetic Fibers for Use in Thin Concrete Overlays

Lab testing has demonstrated that structural synthetic fibers in thin concrete overlays keep cracks tight and help transfer loads across pavement slabs. A recently released research study, co-funded by the Minnesota Department of Transportation and the Minnesota Local Road Research Board, provides recommendations for selecting fiber types and dosages in pavement design.

What Was the Need?

Concrete pavements usually measure 8 to 15 inches thick. For many of these pavements, designers recommend placing dowel bars at the joints during the pour to assist the transfer of wheel load from heavy commercial and agricultural vehicles across concrete slab joints.

MnDOT has found that dowel bars are not effective in a thin concrete overlay, a 4- to 6-inch layer of concrete over an older pavement. These slabs fracture prematurely around the dowels. Adding structural fibers to concrete offers a potential solution. Used primarily to keep cracks from widening, these fibers consist of pieces of thin synthetic material—polymers, carbon fabric, even steel—mixed into the concrete batch.

Many states do not have formal standards for fiber types or characteristics, dosage rates or other specifications for their use. MnDOT currently uses the approved products list created by Illinois Department of Transportation.

Minnesota road engineers agree that fibers work well in concrete, but how well was unknown. Research was needed to determine the optimal physical characteristics of fibers, the amount that should be mixed in to the concrete, and products currently not on the approved products list that may be effective.

What Was Our Goal?

MnDOT wanted to investigate fiber performance in thin concrete overlays, specifically to help identify fibers that are most appropriate in these overlays and recommend acceptable dosage rates for mixing and placing the thin concrete. MnDOT also needed a test procedure and design recommendations or specifications for using fibers.

“This research looked at fiber performance in terms of load transfer to see if fibers can provide an alternative to dowels in thinner concrete pavements,” Maria Masten, Concrete Engineer, MnDOT Office of Materials and Road Research.

What Did We Do?

Research began with a literature search and a survey of state transportation agencies identified by the American Concrete Pavement Association as leading users of fiber-
reinforced concrete overlays.

Laboratory testing first focused on post-crack performance, relying on ASTM C1609, the nationally recognized testing standard. Investigators tested 10 fibers of various lengths, geometries and stiffness in three dosage levels in concrete, evaluating the impact of fiber properties on post-crack performance.

 

cracked concrete beams with fiber reinforcement
Post-crack performance testing of fiber-reinforced concrete beams shows that after cracking, fibers work to keep cracks from widening.

Testing then turned to joint performance. Researchers used four fibers from the previous lab examination and added a fifth fiber, a synthetic fiber used in MnROAD test cells in 2017, to test load transfer across cracks between sections of fiber-reinforced concrete. Together, the two lab phases tested 11 fibers in 43 concrete mixtures in over 400 samples 10 beams and 10 cylinders each of 30 fiber-reinforced concrete samples for post-crack performance, one plain concrete mix and 12 additional fiber-reinforced mixtures in joint performance testing. Analysis considered post-crack performance, crack width, fiber geometry, dosage, load transfer efficiency and residual strength.

In the final step, researchers analyzed the collected data and developed recommendations for MnDOT.

What Did We Learn?

Results confirmed that fibers help keep cracks and joints tight and improve load transfer across cracks and joints in thin concrete overlays. This research indicated synthetic fibers provide equal or better performance than steel fibers, which are expensive, heavy and difficult to mix. Dosages less than 0.25 percent fiber volume fraction of concrete mixture did not improve post-crack flexural or load transfer efficiency across the joint.

In lab mixing, longer and stiffer fibers tended to ball and mat with greater frequency than shorter fibers, though researchers developed a mixing method that reduces balling and matting. Fiber dosage, stiffness and shape significantly influenced strength. Embossed, twisted and crimped fibers outperformed straight, flat synthetic fibers; longer fibers with larger diameters outperformed shorter, smaller diameter fibers that inhibit workability.

“We studied many varieties of fibers before writing a specification for using fibers in concrete overlays. This is one step forward in understanding fiber’s contribution in concrete pavements or overlays,”  Manik Barman, Assistant Professor, University of Minnesota Duluth Department of Civil Engineering.

Fiber shape had moderate influence on load transfer and displacement in joint performance testing. Dosage levels and crack width strongly affected joint performance. Overall, it was found that fibers can increase the load transfer by 30 percent and can reduce the slab displacement by 50 percent.

Researchers suggest designers use trial batches of mixtures, submitting samples to ASTM C1609 testing and selecting fibers based on joint performance results from this study. Graphs and tables from this study correlate fiber properties with post-crack flexural strength and joint performance to help guide selection and dosage.

What’s Next?

Researchers recommend fibers with high lateral stiffness and irregular cross sections in lengths between 1.5 to 2.5 inches and at dosage levels no greater than 1 percent fiber volume fraction to avoid balling, matting and unworkability of concrete mixtures. MnDOT will issue fiber requirements so manufacturers can then submit products and test results for evaluation by MnDOT in developing a new approved products list for fibers in concrete pavements.

Future research could focus on validating design recommendations in the field; establishing fresh fiber-reinforced concrete mixture parameters by running slump, air content and other tests of fresh mixes; and analyzing life-cycle costs and benefits.

This post pertains to the MNDOT and LRRB-produced Report 2018-29, “Comparison of
Performances of Structural Fibers and Development of a Specification for Using Them in
Thin Concrete Overlays,” published August 2018.

Report recommends ways to reduce snowplow operator fatigue

Snowplow operators face harsh driving conditions and must also deal with fatigue and drowsiness. A recent multi-state research project identifies factors that cause driver fatigue in snowplow operators and recommends cost-effective solutions to help reduce it.

Clear Roads – a winter maintenance research initiative – surveyed 33 member states to gather data on snowplow operators’ experiences with fatigue. More than 2,000 snowplow operators from 23 Clear Roads states responded.

Nearly all the respondents (94 percent) reported feeling fatigue at some point while operating a snowplow during winter weather events. The majority of vehicle operators (59 percent) reported their shifts of 8 to 16 hours included both daytime and nighttime segments. Smaller proportions reported that they worked primarily during the day (22 percent) or primarily at night (18 percent).

Survey results also indicated that more experienced operators were more prone to fatigue, and those who worked shifts lasting longer than 16 hours reported significantly higher levels of fatigue.

Based on the results and analysis, researchers ranked the in-cab and external equipment that caused fatigue. The top four equipment-related sources of fatigue were bright interior lighting, standard windshield wipers, misplaced or insufficient auxiliary lighting, and old or uncomfortable seats.

Among the non-equipment-related sources of fatigue, the most commonly reported factor was silence (lack of music or talking), followed by length of shift, lack of sleep, and insufficient breaks.

Snowplow on a snowy highway

Using the same ratings, researchers developed a list of recommended actions that can be implemented by agencies to decrease driver fatigue. The recommendations were based on a comparison of each solution’s costs (equipment costs and potential risk of adversely affecting fatigue) and benefits (effectiveness in reducing operator fatigue).

Among the researchers’ equipment-related recommendations, the most cost-effective called for adding:

  • A CD player or satellite radio to deliver music or speech, preventing short-term fatigue.
  • Dimmable interior lighting to reduce reflections on the windshield and windows, providing better visibility.
  • Dimmable warning lights to reduce back-reflected light from the warning lights, lowering visual distraction.
  • Snow deflectors to reduce the amount of snow blown on the windshield, providing better visibility.
  • Heated windshields to reduce snow and ice buildup on the windshield, providing better visibility.

Non-equipment solutions included encouraging adequate breaks, limiting shifts to 12 consecutive hours when feasible, developing a fatigue management policy, encouraging a healthy lifestyle, and designating dedicated rest locations for operators.

According to the report, both the equipment-related and non-equipment-related solutions provide easy and quick corrective actions that agencies can implement immediately to increase the health and safety of snowplow operators.

Learn More:

Clear Roads is a multi-state winter maintenance research initiative. This article originally appeared in the September issue of the LTAP Technology Exchange.