Category Archives: Environment

Tailgate Test Kit Speeds Up Flocculant Choice to Reduce Sediment in Runoff

The Tailgate Test Kit quickly and easily identifies flocculants that reduce turbidity in construction stormwater discharge. The mobile test setup efficiently determines which of the many available products works best for a particular construction site. In this study, 13 product combinations were tested. A short list of five tests was developed, as well as worksheets to aid in calculating the amount of flocculant needed and developing scale-up procedures.

“The Tailgate Test Kit is a cost-effective innovation that will help us determine the flocculant and quantity of product to use in the field and in real time,” said Dwayne Stenlund, Natural Resources Program Coordinator, MnDOT Environmental Stewardship.

“It’s important to add to the body of knowledge in this area,” said Joel Toso,
Senior Water Resources Engineer, Wenck Associates, Inc. “The Tailgate Test Kit is already being used in the field to help both contractors and maintenance workers make decisions.”

What Was the Need?

Stormwater runoff from construction sites often carries sediment from soil erosion, causing the water to become cloudy or turbid. Federal, state and local stormwater regulations prohibit construction sites from discharging water that is too turbid into the environment. Instead, the runoff must be sent to ponds to allow the sediment to settle to the bottom of the pond. The remaining clear effluent may then be discharged from the site.

A worker collects a sample of construction site stormwater runoff in a plastic-lined settling pond while another looks on.
Testing stormwater sediment levels at the construction site allows field crews to begin treating turbid water quickly.

The chemicals in flocculants speed up the sediment settling process by causing the sediment particles to clump together and fall to the bottom more rapidly. A number of flocculating agents are commercially available. The most effective agent for a specific situation is generally deter-mined by testing various flocculants with water samples in a lab. This selection process usually takes one or two days. Only after the appropriate flocculant is selected can the entire pond be treated.

To speed up this process, MnDOT has developed the Tailgate Test Kit, a series of tests that can be conducted in the field to determine the most effective flocculant, as well as the correct amount, for a specific construction site and soil type. What used to take a day or two to process in the lab now can be accomplished by field crews in an hour or two on the tailgate of a truck, enabling workers to begin treating the ponded turbid water much more quickly.

What Was Our Goal?

The overall goal of this study was to build upon the findings of several recent research projects, including “Flocculation Treatment BMPs for Construction Water Discharges” (2014-25), by developing and improving field methods to reduce total suspended sediment from construction stormwater runoff. A specific aim was to create a method for work crews to test water samples in the field using a mobile test toolkit that contains flocculants identified in previous research. Other goals included determining the most effective amount of the flocculant needed, developing the calculations needed for scale-up once the best product is identified and implementing a test for residual unreacted product.

What Did We Do?

To identify a variety of flocculant product types to evaluate with the Tailgate Test Kit, the research team summarized stormwater best management practices from the literature and from other departments of transportation. Since the effectiveness of product types varies depending upon soil and sediment types and environmental conditions, researchers conducted 13 tests of nine flocculant products (alone and in combination) taken from five distinct product classifications: mineral, polyacrylamide, chitosan, bio-polymer and anionic polyacrylamide. They also tested water samples from eight locations in Minnesota to ensure a cross section of representative samples.

What Did We Learn?

Using the results from these tests, the research team developed a short list of five tests that could be conducted in the field and incorporated in the Tailgate Test Kit. The five tests represent a range of flocculant product classifications and reduce the time required to complete the tests.

The team also prepared worksheets with mixing and dosing guidance to help users identify the most effective amount of product to achieve the target turbidity goal. Finally, the team developed scale-up procedures to aid in using test results to determine full-scale dosing rates on-site and procedures for testing new flocculant products.

The researchers investigated four methods for testing residual flocculant to detect any unreacted product in a sample. A preferred method was not identified during the course of this research but would still be a desirable research outcome.

What’s Next?

Next steps for this research effort include field implementation and new product evaluation.

First, investigators recommend developing a training module and field guide for using the Tailgate Test Kit to encourage implementation of the mobile kit throughout the state. If users understand how it works and how to use the test results for scale-up calculations, they will be more likely to use it.

Second, the product list should be kept current by testing additional flocculant products. It may also be beneficial to create a category for flocculants on the MnDOT Approved/Qualified Products List.

Finally, methods to identify residual and unreacted flocculant product need to be developed. If excess flocculant product is used in field tests, the residues will eventually have to be collected and removed for disposal. Minimizing the excess flocculant used at construction sites is desirable.


This post pertains to Report 2017-32, “Tailgate Test Kit for Determining Appropriate Sediment Reducing Chemicals and Dose Rates,” published July 2017. 

Field Guide Helps Local Engineers Stabilize Damaged Slopes

Cover of Slope Stabilization Guide for Minnesota Local Government Engineers
The new guidebook provides eight cost‐effective stabilization techniques that local government engineers can undertake to stabilize slopes using local materials and equipment. 

Researchers identified 14 sites representing destabilized roadway slopes in Minnesota. Following site investigations, lab testing and modeling, researchers recommended eight slope stabilization techniques that local engineers can undertake without the help of outside geotechnical engineers. The methods were packaged in a simple, accessible field guide for county engineers.

“When most studies end, further research is needed. This project, however, created a user guide that local engineers can use right away to repair destabilized slopes,” said Blake Nelson, Geotechnologies Engineer, MnDOT Office of Materials and Road Research.

“This guide includes an easy-to-use flowchart that steers local engineers toward an appropriate slope stabilization technique,” said David Saftner, Assistant Professor, University of Minnesota Duluth Department of Civil Engineering.

What Was the Need?

Winter weather and spring storms leave their mark on slopes along highways and at bridges. Erosion and other forces cut gashes and ravines into slopes. Some damage such as failing pavement at shoulders or sloughed off sections of a slope can be obvious to road users. Other, more subtle signs of creeping embankments may only catch the attention of engineers.

Slope failures must be repaired to prevent damage to roadways and embankments. When slope damage is severe, a geotechnical engineering firm must step in at some expense. By the time the first soil sample bore is pulled, county engineering departments may already be facing a bill of $20,000. But when damage is less severe, the county can often stabilize the slope using local materials and simple techniques.

Determining whether slope damage can be completed by local engineers or requires outside help remains a challenge for county road departments that often lack geotechnical expertise.

What Was Our Goal?

The Local Road Research Board (LRRB) funded a research project to determine effective methods for stabilizing damaged roadway slopes. These methods would be incorporated in a guide that local engineers could use to identify the type of slope failure and then select an appropriate repair method.

What Did We Do?

Investigators began by surveying Minnesota county engineering departments to identify sites that needed to be stabilized. Local engineers also provided details about both successful and unsuccessful stabilization methods that have been tried in the past. The re-search team inspected 14 destabilized sites identified in this effort and took soil samples from each site.

Then they conducted a literature review of slope stabilization methods, identifying 12 stabilization techniques. Based on this review, researchers tested the soil samples with direct shear tests to identify shear strength parameters such as effective friction angle and cohesion. They ran soil classification tests to measure plasticity, granularity and gradation, and moisture content. These properties were then used as inputs in slope modeling and parametric studies to examine viable repair techniques for each site.

Investigators summarized their analysis of each case and documented stabilization methods that would meet the needs identified in the case studies. Finally, the research team prepared a slope stabilization guide that local engineers could use in the field to identify the type of slope failure and the appropriate solution.

What Did We Learn?

Five of the destabilized sites featured primarily sandy soil, eight had fine-grained soil, and one was rocky. Slope failure was visible at nine of the sites. Groundwater management figured prominently in most sites and repairs.

The literature search identified approaches for specific types of failures. Managing groundwater and drainage improves shear strength in slide-prone areas; surface covers protect slopes from erosion; vegetation and plant roots stabilize soil; excavation and regrading reduce failure forces; and structural reinforcement features directly support slope materials.

Investigators identified eight slope failure mechanisms that encompassed the full range of destabilization scenarios presented in the case studies. Each method had been identified in survey responses as a technique used successfully at the local level. The site conditions that contributed to the failure were identified along with a repair solution for each failure type.

Using the findings from this project, researchers created a slope stabilization guide for Minnesota local government engineers. This field guide describes common slope failures and conditions that may contribute to each. It includes a simple, three-step flowchart that guides engineers to the appropriate repair technique by determining whether the damage is a creep or rotational failure, whether the soil is cohesive or granular, and if there are groundwater concerns.

Based on engineers’ answers, the flowchart directs them to one or more of the eight slope stabilization techniques, providing photographs and repair methods that have been successful in addressing slope problems along Minnesota roadways.

What’s Next?

The Slope Stabilization Guide for Minnesota Local Government Engineers will be sent to each of the 87 county engineering departments. Local engineers can keep the guide on hand when they investigate slope failures along their roadways, and with it quickly identify what work needs to be done to repair the damage.

This project dovetails with two ongoing MnDOT research efforts, Slope Failure Risk Analysis and MnDOT Slope Vulnerability Assessments.

For more related research, see the Protecting Roads From Flood Damage page on the MnDOT Research Services website.


This post pertains to the LRRB-produced Report 2017-17, “Slope Stabilization and Repair Solutions for Local Government Engineers,” and Report 2017-17G, “Slope Stabilization Guide for Minnesota Local Government Engineers,” both published June 2017. 

New recommendations aim to help roadside turfgrass thrive

Keeping Minnesota’s roadsides green is about more than just aesthetics—healthy turfgrass can improve water quality, reduce erosion and road noise, and provide animal habitat. However, harsh conditions such as heat, drought, and salt use can make it difficult for roadside turfgrass to thrive.

In 2014, as part of a study funded by the Minnesota Local Road Research Board (LRRB), researchers in the University of Minnesota’s Department of Horticultural Science identified a new salt-tolerant turfgrass mixture that could be used on Minnesota roadsides. But, when MnDOT began using the mixture, called MNST-12, the agency experienced a series of installation failures.

Now, led by Professor Eric Watkins, the research team has identified new best management practices for installing and establishing this type of salt-tolerant turfgrass.  The study, funded by the LRRB, specifically focused on watering practices, soil amendments, and planting date for both seed and sod.

“Newer improved seed or sod mixes like MNST-12 may have differing requirements for successful establishment compared to other species or cultivars that contractors and other turf professionals are more familiar with,” Watkins says. “Since all of these management practices are prescribed—or not prescribed—in the MnDOT specifications, generating data that can inform future specifications is a valuable outcome of this work.”

The study, which was conducted over several years, included experiments on how water should be applied to new MNST-12 turfgrass installations, the use of soil amendments at the time of establishment, and the effect of the seeding or sodding date on the success of a new planting.

Researchers tested turfgrass watering requirements using an automated rain-out shelter. Photo: Matt Cavanaugh

Based on their findings, the researchers recommend these changes to MnDOT specifications:

  • No soil amendments are necessary, but adequate seedbed preparation is important.
  • Seeding is preferred to sodding between August 15 and September 15.
  • Sodding can be permitted throughout the year, but only if the installer is able to supply frequent irrigation.
  • When watering in sod, attention should be given to the species being used and local rates of evapotranspiration (evaporation from both the soil and plant leaves). Sod installers can anticipate using between 100,000 and 170,000 gallons of water per acre to ensure a successful establishment.
  • Sod can be mowed as soon as sufficient root growth prevents an operator from manually pulling up pieces by hand, but it should not be mowed if wilting from heat or drought.

Currently, the researchers are using the results of this project to develop methods for educating and training stakeholders, including turfgrass installers, on these best management practices. They are also developing systems that could be used by installers in the field to help maximize the success rate of turfgrass installations.

“These best management practices can help limit installation failures and reduce maintenance inputs for future installations, providing both an economic and environmental benefit,” Watkins says.

“The knowledge and improved specifications we gained through this research will allow us to make our contractors more successful, which makes MnDOT successful,” says Dwayne Stenlund, MnDOT erosion control specialist. Because local agencies often rely on these MnDOT specifications as a guide for their projects, they will also benefit from the improved practices.

Stenlund also says the new specifications—especially those related to watering requirements—could allow for a clearer understanding of the true cost and value of turfgrass installation and maintenance work, which could ultimately improve the accuracy of the project bidding process.

In another project, the research team is exploring other turfgrass stresses, such as ice cover and heat. They are also testing additional turfgrass species and mixtures in an effort to continue improving MnDOT specifications for roadside turfgrass installations.

10 Ways Transportation Research Keeps Minnesotans Moving in the Winter

As the first big snow and ice storms sweep through parts of Minnesota today, we’d like to remind you of some of our great winter weather research studies. Here’s a list of some of this winter-related research from MnDOT and the Local Road Research Board:

Living snow fences

Living snow fences are trees, shrubs, native grasses, wildflowers, or rows of corn crops located along roads or around communities and farmsteads. These living barriers trap snow as it blows across fields, piling it up before it reaches a road, waterway, farmstead or community. Through multiple research efforts, MnDOT continues to advance its practices for living snow fences. Willow plants, which are which are inexpensive and fast-growing, are a new form of snow fence. MnDOT has also developed a tool that allows the agency to better offer a competitive payment to farmers.

Related studies:

Permeable pavement

According to recent studies, researchers believe Minnesota could eliminate salt usage on low-volume local roads by switching to permeable pavements. Permeable pavements — pavements that allow water to seep through them — have been studied in some Minnesota cities, and a research project is currently underway to further investigate how much salt reduction can be expected.

Related studies:

Traffic recovery during winter storms

MnDOT’s Metro District developed a way to automatically determine when to stop plowing a highway after a snow storm. The method involves measuring traffic flow to determine when road conditions have recovered. Current practice calls for maintenance workers to visually inspect traffic lanes. The automated technique could potentially be more accurate and save time and costs.

Related study:

Salt and other deicing chemicals

Minnesota winters are no joke, and Minnesotans still need to get wherever they’re going despite harsh snow and ice conditions. That’s why MnDOT is constantly researching new and improved versions of salt and other deicing chemicals to keep roads safe at the least amount of damage to lakes, rivers and groundwater.

Related studies:

Snowplow blades

A couple years ago, MnDOT snowplow operators in southwestern Minnesota invented an experimental plow that uses the wind to cast snow from the road without impeding traffic or the operator’s view. This winter, MnDOT intends to test multiple types of snowplow blades as part of a larger research project comparing types of deicers.

Related study:

Snowplow technology

While a lot of research has been done on the plow itself, MnDOT hasn’t forgotten to invest in research to improve in-cabin snowplow technology as well. Some of the great technology recently developed to assist snowplow drivers, includes a driver assist application that a MnDOT plow driver used last winter to navigate a storm and rescue stranded motorists. The agency is also studying equipment factors that can cause fatigue in snowplow operators.

Related studies:

Salt-resistant grasses

When the snow melts every spring, the damage salt does to roadside grass is obvious. That’s why researchers have spent years looking into developing and implementing salt-tolerant grasses on roadside settings. The result of this effort has been the introduction and use of salt-tolerant sod and seed mixtures that are made up primarily of fine fescue species. MnDOT is also studying how chlorides are transported within watersheds in order to better focus efforts to reduce deicer usage in  areas where it will have the biggest environmental impact.

Related studies:

Cold-weather cracking prediction test

MnDOT has developed a test that can tell whether a contractor’s proposed asphalt mix will cause the road to crack in the winter. Building roads using better asphalt mixes leads to less cracking and fewer potholes. The test is expected to save the state about $2 million per year.

Related studies:

Pedestrian snow removal

It’s not all about cars and trucks. Minnesotans still ride bikes and walk in the winter. That why MnDOT assembled a comprehensive review of existing practices and policies from other states, as well as a summary of valuable publications that could be referenced while developing a new policy.

Related study:

Maintenance Decision Making

MnDOT research led to the development of a Maintenance Decision Support System and related components provide real-time, route-specific information to snow plow drivers, as well as recommended salt application levels. These recommendations have reduced chemical usage while still achieving performance targets for snow and ice clearance.

Related studies:

Knowing While Mowing: GPS Keeps Maintenance Workers Out Of the Weeds

As temperatures fall and days get shorter, MnDOT Metro District maintenance workers are wrapping up a season of mowing grass along roadsides and in medians that they hope will prove a little more efficient than in the past.

Thanks to a research project that installed GPS devices in tractor cabs, operators have a better sense of exactly which areas they need to mow and which areas should be left alone. Five Metro District tractors were tested in 2015. This year, more than 40 tractors were fitted with the automated vehicle location (AVL) technology, which includes a GPS antenna, an on-board central processing unit (CPU) and an in-cab screen with a user interface.

Trisha Stefanski, Metro District asset management engineer, expects one of the biggest benefits of the project to be a reduction in herbicide use. Maintenance crews use herbicide to control the spread of noxious weeds that sometimes get spread during mowing operations. Mapping exactly where noxious weeds are, and providing that information to operators on a real-time, in-cab screen and user interface helps them mow around those areas.

“We’re really hoping it will reduce the amount of herbicide that we’re putting on our roadways by 50 percent,” Stefanski said. “We’re not certain that will be the number, but that’s what we’re hoping for. We think just not mowing those areas will not spread as many noxious weeds and so we don’t have to apply as much herbicide.”

Metro District operators, such as Jesse Lopez, give the AVL technology rave reviews.

“Basically you can see what you shouldn’t mow and what you should mow. So, it makes it easy for me. It’s just like playing a game,” Lopez said. “This actually helps me to optimize what my job is. I know exactly where I’m at and where I’m going. I think everyone should use it – absolutely everybody who is in a mowing situation or a plowing situation.”

In addition, the AVL technology helps maintenance supervisors keep tabs on exactly where their operators are in real time. It also helps supervisors complete reports by automatically providing the geographic areas where mowing has been completed.

Stefanski says the project has gone really well, and she hopes collecting more data over another mowing season will show real savings on herbicide use. In the meantime, she is thinking of other ways AVL technology could be applied to maintenance operations.

“What I really like about the project is that we are taking something used in a lot snow plows and a lot of other technologies – cars, other things, maybe UPS uses them – and we’re putting it into maintenance operations,” Stefanski said. “Having it for mowing, we can also use it for smooth pavements. We can also use it for other things in mowing operations.”

Protecting Bees & Butterflies With Right-of-Way

Bees, butterflies and other pollinators busily work on our behalf to help our crops and wild plant life reproduce. Most plants cannot produce fruits and seeds without the aid of these little bugs.

MnDOT is taking steps to ensure that the habitat these creatures depend on gets the protection it needs.

In addition to recently signing an agreement with five other state DOTs to improve pollinator habitat along Interstate 35, a key migratory corridor for Monarch butterflies, MnDOT has just completed a review of other state and local government practices to identify more opportunities to use existing right-of-way to protect pollinators.

“State roadways have acres and acres of habitat ideal for pollinators,” said MnDOT Commissioner Charlie Zelle, during the announcement about the I-35 initiative. “With some careful planning, we can ensure that Monarch butterflies and other creatures that pollinate are able to thrive, which ultimately benefits our food sources and us.”

New Opportunities for Protecting Pollinators

A Transportation Research Synthesis (TRS) released this week underscores MnDOT’s commitment to maintaining roadside habitat for pollinators.

MnDOT set out to learn about the experiences of other state departments of transportation and local agencies in maintaining pollinator landscapes on highway rights of way through partnerships with individuals, groups or local agencies.

Results of the literature review are supplemented with findings from a survey of selected state DOTs and Minnesota counties. Nine state DOTs describe current practices or plans to develop new pollinator-specific partnerships; existing partnerships that have been expanded to address pollinators; and Adopt-a-Highway programs that support maintenance of vegetation in the right of way.

The Transportation Research Synthesis (TRS) may lead to enhancements to MnDOT’s existing practices or the development of a new pollinator-specific partnership program.

While MnDOT does not have a community partnership that focuses solely on promoting pollinator habitat, its Community Roadside Landscape Partnership Program allows Minnesota communities to partner with MnDOT to establish and maintain landscaping in the ROW along highways that traverse their communities, and these landscaping treatments may benefit pollinators.

MnDOT has also partnered with the Minnesota Board of Water and Soil Resources and the Minnesota Department of Natural Resources to establish more than 20 native seed mixes for use on Minnesota roadsides. MnDOT’s online PlantSelector tool includes a seed mix tab to help designers and novices select the right seed for the right place.

Learn more:

A look at five great environmental research projects

To mark Earth Day 2016, MnDOT Research Services is taking a glance at five stellar examples of current research projects at MnDOT that involve pollution control, wetland mitigation, road salt reduction and new ways of recycling pavement.

1: Reducing Road Construction Pollution by Skimming Stormwater Ponds 

Temporary stormwater ponds with floating head skimmers can remove clean water from the surface of a settling pond.

Soil carried away in stormwater runoff from road construction sites can pollute lakes and rivers.

Stormwater settling ponds provide a place for this sediment to settle before the water is discharged into local bodies of water. However, since stormwater ponds have limited space, a mechanism is needed to remove clean water from the pond to prevent the overflow of sediment-laden water.

MnDOT-funded researchers designed temporary stormwater ponds with floating head skimmers that can remove clean water from the surface of the settling pond, using gravity to discharge water into a ditch or receiving body.

The study, which was completed in spring 2014, identified five methods for “skimming” stormwater ponds that can improve a pond’s effectiveness by 10 percent. MnDOT researchers also created designs for temporary stormwater ponds on construction sites with the capacity to remove approximately 80 percent of suspended solids.

These designs will help contractors meet federal requirements for stormwater pond dewatering. Researchers also determined how often a pond’s deadpool must be cleaned, based on watershed size and pool dimensions.

2: Roadside Drainage Ditches Reduce Pollution More Than Previously Thought  

Photo of roadside ditch
Stormwater infiltration rates at five swales were significantly better than expected based on published rates.

Stormwater can pick up chemicals and sediments that pollute rivers and streams. Roadside drainage ditches, also known as swales, lessen this effect by absorbing water. But until recently, MnDOT didn’t know how to quantify this effect and incorporate it into pollution control mitigation measures.

In a study completed in fall 2014, researchers evaluated five Minnesota swales, measuring how well water flows through soil at up to 20 locations within each swale.

A key finding: grassed swales are significantly better at absorbing water than expected, which may reduce the need for other, more expensive stormwater management practices, such as ponds or infiltration basins.

This could save MnDOT and counties significant right-of-way and construction costs currently expended on more expensive stormwater management techniques.

3: Could Permeable Pavements Eliminate Road Salt Use on Local Roads? 

Robbinsdale
Even with little or no road salt, a permeable pavement like this porous asphalt in Robbinsdale, Minnesota, collects little slush and snow in the winter because it warms well and remains porous enough to infiltrate surface water effectively.

Road salt is used for de-icing roadways during winter months, but can have a negative impact on the environment.

This research, which was just approved for funding through the Minnesota Local Road Research Board in December 2015, will investigate the reduction in road salt application during winter months that can be attained with permeable pavements, while still providing for acceptable road safety.

Some initial investigations (see previous study) suggest that road salt application can be substantially reduced, even eliminated, with permeable pavement systems. The proposed research will investigate this hypothesis more thoroughly, and further document the reduction in road salt application that can be expected with permeable pavement.

4: Highway 53 Shows Potential of Using Road Construction Excavation Areas For Wetland Mitigation

IMG_2764
This photo from spring 2015 shows that wetlands have begun to take hold along Highway 53.

Road construction in northeast Minnesota often causes wetland impacts that require expensive mitigation. However, borrow areas excavated for road construction material can be developed into wetland mitigation sites if hydric vegetation, hydric soils and adequate hydrology are provided. Fourteen wetland mitigation sites were constructed north of Virginia, Minnesota along the U.S. Trunk Highway 53 reconstruction project corridor and evaluated for wetland.  The sites were established with the goal of mitigating for project impacts to seasonally flooded basin, fresh meadow, shallow marsh, shrub swamp, wooded swamp, and bog wetlands. All but one of the sites consistently meet wetland hydrology criteria.

The sites contain a variety of plant communities dominated by wet meadow, sedge meadow, and shallow marsh. Floristic Quality Assessment (FQA) condition categories for the sites range from “Poor” to “Exceptional.”

According to the research report published in March 2016, these sites have shown the potential for creating mitigation wetlands in abandoned borrow pits in conjunction with highway construction. Adaptive management, particularly water level regulation, early invasive species control, tree planting, and continued long-term annual monitoring can make mitigation sites like these successful options for wetland mitigation credit.

5: Recycling Method Could Give Third Lives to Old Concrete Roads 

2016-14 Image
This photo shows a cold in-place recycling equipment train in action.

MnDOT already extends the lives of some old concrete highways by paving over them with asphalt instead of tearing them up. Now MnDOT hopes to add a third life for these old concrete roads by using a process called cold in-place recycling to re-use that existing asphalt pavement when it reaches the end of its life.

Cold in-place recycling (CIR) uses existing pavements, without heat, to create a new layer of pavement. It involves the same process of cold- central plant mix recycling (which is being employed by MnDOT for the first time on two shoulder repair projects this year), but it is done on the road itself by a train of equipment. It literally recycles an old road while making a new road.

CIR has been in use in Minnesota for 20 years, but only with hot-mix asphalt (HMA) over gravel roads. The purpose of a new study, which was approved for funding in April 2016, is to validate Iowa’s promising new practice using CIR on bituminous over concrete.

In this research project (see proposal), MnDOT will use cold-in-place recycling to replace the asphalt pavement on a concrete road and then evaluate it for several years, comparing it also with control sections.

Along with the potential of a better service life, the cost of CIR is much lower than new hot mix asphalt (HMA). Therefore, a 20-percent to 30-percent price reduction per project may be realized.

Designing fish-friendly culverts

Roadways for humans can sometimes create roadblocks for fish, but researchers hope to establish a set of culvert design practices to help aquatic creatures get where they’re going.

Many fish depend on mobility along a river for feeding and spawning. Where roads meet rivers, however, culverts can block fish and other aquatic organisms that can’t navigate changes in current, lighting and other factors.

Waterway barriers threaten an already endangered species of minnow known as the Topeka shiner (pictured above). It can also be a big problem for economically important fish such as trout or northern pike. That’s why the Minnesota Department of Natural Resources prefers building bridges to culverts.

However, bridges are not always economically feasible, and so MnDOT is working closely with the DNR to develop culverts that protect both public safety and the environment.

Photo of boxed culvert
Culverts allow water to pass under roads. Occasionally, they can harm a stream’s fish habitat by inadvertently acting as a barrier to fish passage or migration. There are nearly 11,000 culverts in Minnesota.
Sediment Content 

Recent research suggests that installing boxed culverts differently could greatly improve fish passage.

Culverts are typically placed a little below the streambed with the expectation that the stream flow will naturally fill them with sediment. Researchers tested that assumption and found it to not always be accurate.

“We found that pre-filling the culvert with sediment that replicates the streambed as part of the installation process helped prevent upstream erosion and the development of vertical drops that can become barriers to aquatic movement,” said Jessica Kozarek, a University of Minnesota research associate. “In addition, pre-filling the culvert helped ensure the sediment remained inside the culvert flows were high and water moved quickly during rainstorms.”

MnDOT has been working with the DNR to identify the conditions that determine whether a newly installed culvert will naturally fill with sediment, replicating surrounding streambed conditions, or whether a stream’s water flow will transport sediment out of a culvert.

Using an experimental flume at the University of Minnesota’s St. Anthony Falls Laboratory, researchers tested MnDOT’s standard box culvert design under a variety of stream conditions.

Laboratory simulations suggest that filling a culvert with sediment at installation, rather than allowing it to fill over time is, with some exceptions, generally the best ap­proach for low- and moderate-grade streams. Additionally, steep, fast-moving waters require a filled culvert with structures such as larger rocks to keep sediment in place. These structures also create steps, pools and riffles that enable fish to rest as they move upstream.

MnDOT will use this latest research, along with conclusions from other recent studies, to create a guide for fish-friendly culvert designs.

“Of all the things we’ve studied, there are maybe three or four research projects. This manual will pull it all together,” said Petra DeWall, state waterway engineer at the Minnesota Department of Transportation.

Further research is underway to determine whether aquatic organisms are deterred by low light conditions in long, dark culverts. Researchers are also looking into whether mussel spat rope could be used to create a rough bottom to reduce water speed in culverts with no sediment.

Related Resources

Salt-tolerant sod and seed mixes bring greener roadsides to Minnesota

For Minnesota’s roadside grasses, life isn’t easy. To survive, grass must be able to withstand extreme stresses including drought, heat, disease, soil compaction, poor quality soils, and high levels of road salt. Ideally, it could survive all that while still looking lush and green.

“Many roadsides, especially in metropolitan areas, need to look good,” says Eric Watkins, associate professor in the Department of Horticultural Science. “In addition to aesthetics, quality roadside vegetation is needed to prevent erosion and maintain water quality from roadside runoff.”

In 2010, MnDOT noticed a number of its new sod and seed plantings were failing and asked U of M experts to take a look at its specification. “We saw the problem immediately,” Watkins says. “The specification was for a mix with a lot of Kentucky bluegrass, which needs a great deal of care and watering. There was clearly an opportunity for improvement.”

During the next several years, Watkins’ team, led by former graduate student Josh Friell, worked to identify the best seed and sod for use along Minnesota’s roadsides in research sponsored by the Minnesota Local Road Research Board and MnDOT. Findings are now available in a final report.

The study was completed in several stages. First, many different types of cool-season grasses were planted in the fall and assessed the following spring to determine their ability to establish and survive on roadsides in Minnesota. Next, researchers looked at the salt tolerance of those grasses.

Eric Watkins (third from left) leads a greenhouse tour of grass mixtures.
Eric Watkins (third from left) leads a greenhouse tour of grass mixtures.

“In cold-weather climates like Minnesota’s, salt tolerance is required because of the application of deicing salts in the winter,” Watkins explains. “To determine if a grass species could stand up to this stress, we applied different levels of salt solution to the different grass species in a greenhouse. We identified several types of fescue grass as the most salt tolerant.”

Based on the results of the first two stages, researchers developed and tested 50 different grass mixtures along Minnesota’s roadsides and evaluated the survival and performance of those plantings for two years. In addition, each mixture was planted under a movable rain-out shelter to determine drought tolerance. This phase of the study resulted in the identification of a mix of three types of fescue for planting on roadsides in Minnesota.

Finally, researchers needed to find out if the new grass mixture would work as sod (sod growers need to be able to harvest it properly from their sod fields). “Most sod currently grown in Minnesota is Kentucky bluegrass, which isn’t the best for winter survival when salt stress is a problem,” says Watkins. “We grew 51 different grass mixtures as sod for 22 months and found that contrary to popular belief, fine fescue mixtures produced sod of acceptable strength for harvest.”

MnDOT has applied the research to standard specifications for construction activities for salt-tolerant sod products, salt/shade/drought-tolerant turf seed mixtures, and a third-party certification program for ensuring performance standards are met based on past and current research results, says Dwayne Stenlund, MnDOT erosion control engineering specialist. Researchers are also working with the state’s sod growers to produce sod grown from the new seed blends.

Moving forward, the researchers plan to continue their work to improve Minnesota’s roadside grass plantings. “The reality is that the success of sod or seed plantings depends on a number of factors, including time of year, amount of water, soil preparation, temperature, and sod harvest depth,” Watkins says. “In our next project, beginning this spring, we will identify the most important factors for the success of roadside plantings and sod cultivation, and then help MnDOT update the specifications for managing new installations.”

Snow Control Tools Webinar Jan. 28

Tune in to this free webinar at noon CST on January 28 to learn about the Blowing Snow Control Cost-Benefit Web Tool. This online tool allows transportation agencies to calculate the amount they can pay private landowners (farmers) to establish a living snow fence (shrubs) or to leave standing corn rows or other structures like hay bales or silage bags to reduce blowing snow on sensitive highways.

The tool also analyzes grading and structural snow fence benefits. Reducing blowing snow on highways decreases highway maintenance costs and improves traffic safety in winter driving conditions.

To watch, register online by January 23. For more information, please visit the event web page.