Tag Archives: climate change

Developing Transportation Systems Climate Resilience Performance Measures

Climate change is exacerbating weather-related impacts on the transportation system. As floods, droughts, wildfires and other extreme weather events become more common and destructive, transportation infrastructure will need to adapt to become more resilient.

Continue reading Developing Transportation Systems Climate Resilience Performance Measures

New Project: Have Minnesota’s Warmer Winters Increased the Number of Freeze Thaw Cycles?

Minnesota is experiencing warmer winters and an increase in freeze-thaw events may negatively impact pavement systems. However, the impacts of these recent climate changes on freeze-thaw cycles have not been well studied.

Continue reading New Project: Have Minnesota’s Warmer Winters Increased the Number of Freeze Thaw Cycles?

New Project: Climate Change Adaptation of Urban Stormwater Infrastructure

Climate change scenarios have been fairly well-tested and vetted. Moore et al. (2015) found that one of the noteworthy impacts on upper Midwest cities is an increase of storm magnitude of 39% (moderate scenario) to 163% (pessimistic scenario). However, the impact of these scenarios on stormwater infrastructure are not well understood and documented. There are some important financial decisions that need to be made for stormwater infrastructure in the present and near-future, requiring demonstration and discussion of the impacts of climate change on stormwater infrastructure.

Continue reading New Project: Climate Change Adaptation of Urban Stormwater Infrastructure

New Project: Extreme Flood Risks to Minnesota Bridges and Culverts

Extreme flooding is a threat to Minnesota’s transportation infrastructure and the safety and economic vitality of its communities. A spate of recent flooding events around the state has demonstrated this and heightened the level of concern. Furthermore, climate change — a factor not traditionally accounted for in the design of the state’s infrastructure — is projected to enhance precipitation and the threat of flooding in coming decades.

Given this, MnDOT is undertaking an effort to better predict the threat flooding poses to its bridges, large culverts and pipes, which may be increasingly called upon to convey higher, more frequent flood flows than they were designed for.

The state transportation research program recently launched a two-year extreme flood vulnerability analysis study, which will develop a methodology for characterizing the vulnerability of the state’s bridges, large culverts, and pipes to flooding.

The effort builds upon the previously completed Flash Flood Vulnerability and Adaptation Assessment Pilot Project (2014), which scored bridges, large culverts, and pipes in MnDOT Districts 1 and 6 for flood vulnerability, allowing detailed assessments of adaptation options for each of their facilities to be prioritized.

This new study, which will be conducted by WSP, aims to develop and test ways to enhance the vulnerability scoring techniques used in the previous study and ensure their applicability throughout the state. Researchers will not actually undertake the statewide assessment, but specify an approach that could be used for it. They will also explore how the outputs of the analysis can be incorporated into MnDOT’s asset management systems. The results of this work will be a clear path forward for MnDOT to use for prioritizing adaptation actions — a key step towards enhancing agency resilience and maintaining good fiscal stewardship.

Project scope

The primary intent of this study is to develop a methodology for characterizing the flood vulnerability of bridges, large culverts, and pipes statewide. As part of the development process, the methodology will be tested on a limited, but diverse, set of assets across the state. Following a successful proof of concept, recommendations will be made on how the outputs (i.e., the vulnerability scores) can be incorporated into the state’s asset management systems.

By determining which facilities are most vulnerable to flooding through the techniques developed on this project, MnDOT can prioritize where adaptation measures will make the biggest impact, ultimately decreasing asset life-cycle and road user costs. Without the development of assessment techniques, adaptation measures run the risk of being implemented in a more reactive and/or ad-hoc fashion, with less regard to where the biggest “bang for the buck” can be realized.

This project will produce several technical memorandums, and is expected to be completed in early 2021.