All posts by Christine Anderson

U of M provides freeway ‘lid’ expertise for Rethinking I-94 project

MnDOT is exploring the development of freeway “lids” at key locations on I-94 in the Twin Cities. To analyze the potential for private-sector investment and determine what steps might be needed to make lid projects a reality, MnDOT invited the Urban Land Institute (ULI) MN to conduct a Technical Assistance Panel with real estate experts and other specialists. The U’s Metropolitan Design Center (MDC) provided background and research for the panel.

A lid, also known as a cap or land bridge, is a structure built over a freeway trench to connect areas on either side. Lids may also support green space and development above the roadway and along adjacent embankments. Although lidding is not a new concept, it is gaining national attention as a way to restore communities damaged when freeways were first built in the 1960s.

According to MnDOT, roughly half of the 145 bridges on I-94 between the east side of Saint Paul and the north side of Minneapolis need work within the next 15 years. A shorter window applies in the area around the capitol to as far west as MN-280. In anticipation of the effort to rebuild so much infrastructure, the department wanted a deeper understanding of how attractive freeway lids and their surrounding areas would be to private developers and whether the investment they would attract would generate sufficient revenue to pay for them.

The three-day panel session was designed to consider the I-94 corridor and study three specific areas: the I-35W/Minneapolis Central Business District, historic Rondo Avenue in Saint Paul, and Fairview Park in North Minneapolis. It also included a “lightning round” for high-level observations of five other sites.

Mic Johnson, senior fellow with MDC, provided background about lidding and shared successful examples from around the country at the panel kick-off dinner. MDC has analyzed a wide range of freeway lid structures and identified seven basic lid typologies. “These typologies provide broad thematic guidance for thinking about what features best serve a location,” Johnson says.

The briefing book provided to panelists included detailed research by MDC about the economic opportunities of the area’s freeway lids. MDC also created four appendices (projects, case studies, prototypical lid diagrams, and health and economic value) for the panel final report.

MDC has been involved in lid-related activities for several years. Students participating in an Urban Design Studio course in fall 2013 taught by Johnson conducted an extensive analysis of the I-35W/Minneapolis area and created an architectural model of a lid connecting the U of M’s West Bank to Downtown East. Their model was displayed at the IDS Center.

MnDOT Commissioner Charlie Zelle requested that ULI MN convene the panel as part of the larger “Rethinking I-94” project, which is developing a vision for the corridor through a comprehensive public involvement process. “Lid projects are one way being considered that could reconnect neighborhoods such as Rondo that were divided by freeways in the 1960s,” Zelle says. The Rondo neighborhood was also featured in the USDOT’s Every Place Counts Design Challenge in July.

As part of its report to MnDOT, the panel concluded that private-sector development would not pay for the lids directly, but lids would create development interest that could generate significant long-term revenue to pay for lid maintenance, programming, and other amenities.

To build momentum and create an identity for lid projects, the panel also recommended that the area’s lids be considered as a whole under a single banner, not as separate projects, as part of a rebranded vision called the Healthy Communities Initiative. The final report is available on the ULI MN website.

(Adapted from the ULI MN report: Healthy Communities Initiative, Nov. 2016.)

Project seeks to ease traffic congestion in a roundabout way

Freeways and highways aren’t the only urban roads with traffic congestion, even though traffic management strategies have been largely directed toward improving traffic flows there. So, U of M researchers have taken to city streets to reduce congestion in an innovative—albeit roundabout—way.

“There’s been a lot of research focused on controlling congestion on major highways and freeways, but there’s relatively less when it comes to looking at controlling traffic on urban arterials,” says Ted Morris, a research engineer with the Department of Computer Science. “It’s a very different picture when you get into urban arterials and the traffic behaviors going on there, because of the dynamics of route choice, pedestrian interactions, and other factors.”Image of overhead view of roundabout

Morris is part of a research team that aims to create a framework for testing and evaluating new urban traffic sensing and control strategies for arterial networks. The goal is to balance safety and efficiency for all users—especially in places where new types of urban transportation facilities are planned in the next few years.

The team is using the 66th Street corridor in Richfield as a test bed for its research. The city, along with Hennepin County, is in the process of converting a series of signalized intersections along the route to roundabouts over the next few years. The roundabout designs also incorporate new facilities for pedestrians, bikes, and bus transit as part of a multimodal approach.

Initially, the researchers sought to create a larger network of interconnected sensors and a live test bed, Morris says. But funding limitations kept the project area to approximately 10 miles of arterial roads, a portion of which will be supported by a network of interconnected traffic sensors. The research team is instrumenting major intersections along 66th Street with a reliable, low-cost, high-resolution camera mounted on a center pole and supporting electronics as the intersections are being reconstructed.

“You can zoom in pretty closely to capture all the different movements and events that we need to use for measurement and detection,” Morris adds. “The key to this, to really make it reliable, is you need to very carefully quantify gap acceptance and how that varies in time and time of day. You also need to know how pedestrian activities interact with the traffic flow.”

The use of roundabouts has grown in the region because they cost less to build and maintain than signalized intersections, they meet the latest design standards, and they improve safety by reducing traffic conflicts. But predicting the capacity of roundabouts can be especially challenging when factoring in pedestrian traffic, uneven traffic origin-destination flow, heavy vehicle volumes, and approach vehicle gap-selection timing.

In addition to creating a sensor network to obtain real-time vehicle and pedestrian data to help control traffic and keep it flowing smoothly, the researchers also are developing a traffic simulation model that includes almost all of Richfield—more than 140 signalized intersections covering 21 square miles, including the arterials. The simulation model will be used to develop and test traffic control strategies under different scenarios. Minnesota Traffic Observatory director John Hourdos is leading that effort.

This research and the field deployment system are funded through a collaborative grant from the National Science Foundation Cyber Physical Systems program. SRF Consulting is the industrial partner to help design the sensor network and evaluate the system.

CTS Research Conference: a day of discovery and innovation

Have you registered to attend the annual CTS Transportation Research Conference on November 3?

The one-day event, held at The Commons Hotel on the U of M campus, will highlight new learning, emerging ideas, and the latest innovations in transportation. Sessions will also explore implementation efforts and engagement activities.

In the opening session, “Creating Sustainable, Livable, Forward-Compatible Cities for Economic Resilience,” author Gabe Klein will explore the innovations taking place in cities and how government, business, and nonprofit leaders can utilize this wave of change to shape a quality of life that is improved and not compromised.

Following his presentation, the following panel of experts will share perspectives on the implications for the future of transportation systems in Minnesota cities:

  • Mayor Ardell Brede, City of Rochester
  • Mayor Chris Coleman, City of St. Paul
  • Anu Ramaswami, Professor, Humphrey School of Public Affairs, University of Minnesota
  • Mayor Betsy Hodges, City of Minneapolis (invited)

In the luncheon presentation, “How to Promote and Prepare for Automated Driving,” Professor Byrant Walker Smith will present steps that governments can take now to encourage the development, deployment, and use of automated driving systems.

Complete program details and registration information is available on the CTS website. Please plan to join us for a day of discovery and innovation!

New video: Finding solutions to save lives

See how researchers at the Roadway Safety Institute (RSI), led by the University of Minnesota, are working to reduce crashes and save lives on our nation’s roadways in a new video.

The video features RSI director Max Donath and researchers from across the region who are working on a breadth of projects, ranging from reducing crashes at rail grade crossings to improving road safety on tribal lands. The video also highlights a few of RSI’s education efforts, including a museum exhibit designed to introduce preteens to safety concepts.

RSI was established as the Region 5 University Transportation Center in 2013 and is housed at CTS. MnDOT is a key partner for RSI, funding a variety of safety-focused projects by RSI researchers.

For more information about RSI, visit the Institute’s website.

‘New logistics’ will change the way goods are delivered—and how the road network is used

Today, moving freight accounts for more than a third of the world’s transport energy—and that share is growing. The rise in global trade, online retailing, and business-to-business delivery is not only changing how goods are moved but also the type of goods moved and how far or frequently they are transported.

Currently, this massive movement of goods throughout the economy relies on an intricate—and largely decentralized—multimodal network of truck, rail, ship, and airplane delivery. However, change is on the horizon. In a study sponsored by MnDOT and the Minnesota Local Road Research Board, U of M experts outline the important impacts these changes will have on the road network and transportation infrastructure.

“There is hope that new methods of organization and proposed standardization will increase efficiency of freight movement and give rise to a new era of goods transport,” says Adam Boies, an assistant professor in the Department of Civil, Environmental, and Geo- Engineering (CEGE). “In the years to come, we expect that advances in logistics systems will be enabled by new technologies, approaches, and the desire for increased efficiency.”newlogistics2

Changes in the way logistics operations are organized will help drive advances. New information technology permits the sharing of data between and across businesses, which in turn drives efficiency and leads to fuller vehicles. “This may reduce the distance traveled by heavy goods vehicles per unit of GDP, which may in turn reduce costs and entice more demand for delivered goods,” says CEGE professor David Levinson, the study’s principal investigator. “Ultimately, this could mean fewer trips by individual consumers and more deliveries. We anticipate the result will be a net reduction in distance traveled.”

The study also examined some of the potential drivers for changes in the freight industry as a result of logistics reorganization. These include supply chain pooling, in which individual logistics operations are shared between collaborators, and the Physical Internet Initiative, which seeks to create standards for packaging to enable the homogenization of freight technology. “While both of these advancements have the potential to increase logistics efficiency by reducing the transportation of empty loads, they will also increase truck weights—which may increase pavement damage,” Boies says.

Other transportation and logistics changes will result from shifts in the ways businesses and consumers receive goods and services, including business-to-business systems and technologies that enable a sharing economy, same-day delivery services, 3-D printing, and “last mile” delivery services. In addition, a growing portion of purchases can be delivered directly over the Internet. “Delivery is easily automated for data-based goods like books, music, video, and software,” Levinson says. “Purchases that could once only be completed by moving things can now be done by moving data.”

The research is part of a multi-pronged study that analyzed the technological shifts altering surface transportation and the implications for Minnesota. Findings are available in a final report: The Transportation Futures Project: Planning for Technology Change.

Alternative fuels will help shape Minnesota’s transportation future

The mix of fuels used to power the vehicles on our nation’s roadways is diversifying rapidly.  While gasoline and diesel are still dominant, an increasing percentage of vehicle power is coming from alternatives such as biofuel, natural gas, and electricity. What could this shift mean for Minnesota’s transportation future? MnDOT and the Minnesota Local Road Research Board turned to U of M experts for analysis.

“The rise of alternative fuels is something we need to keep a close eye on, because it presents a number of issues that may significantly alter our state’s transportation system,” says Adam Boies, an assistant professor in the U of M’s Department of Civil, Environmental, and Geo- Engineering (CEGE).

Minnesota leads the nation in biofuel use, in part due to a series of legislative acts designed to encourage ethanol production and consumption. Boies predicts, however, that biofuel consumption in the state is near saturation and that future shifts will likely be between biofuels. “These shifts may alter the routes of heavy-goods vehicles in the state as refineries shift from corn and soy to fuels derived from agriculture wastes and forest byproducts,” he says.

If the price of natural gas remains significantly lower than diesel fuel, natural gas vehicles will likely make up an increasing share of the heavy-duty vehicle fleet in Minnesota. A larger natural gas refueling infrastructure will need to be developed, most likely by private organizations that manage fleets of vehicles. “As this happens,” Boies says, “efforts must ensure that natural gas vehicles and refueling infrastructure do not emit significant quantities of methane, which has a high global warming potential.”

Minnesota electric vehicle sales have lagged behind the nation—winter temperatures are one factor—but Boies expects the numbers to rise. He estimates 16 percent of new cars sold in Minnesota in 2035, and 56 percent in 2050, will be electrified. The growing numbers will require a more robust charging infrastructure, likely supplied or subsidized by government agencies, he says.

In the long term, on-road charging systems are being investigated. In these systems, under study in several countries, charging coils embedded within the roadway transfer power wirelessly to vehicles. “The systems could make electric vehicles drastically more efficient by reducing vehicle battery size,” he says.

Better vehicle efficiency is likely to continue the trend of falling fuel tax revenues. “Minnesota will need a method for producing revenues from electric vehicles to maintain long-term funding for the transportation road network,” he says. “Currently the higher price of electric vehicles results in increased revenues during vehicle registration, which tends to offset the difference in fuel tax revenues. However, as the price differential between electric vehicles and traditional vehicles shrinks, there will be decreased funding for Minnesota roadways unless additional revenue sources are found.”

Finally, emphasis on fuel efficiency in the light-duty and heavy-duty vehicle fleets will drive the weight of these vehicle segments in opposite directions. “Light-duty vehicles will get lighter and heavy-duty vehicle fleet operators will lobby for increased weight limits on Minnesota roadways to reduce the energy intensity of goods deliveries,” Boies says. “This growing disparity in weight between the two vehicle classes may require increased safety measures to reduce the severity of crashes between vehicle classes.”

“The question of how alternative fuels and electric vehicles will impact the transportation system, ownership models, and operating costs, as well as vehicle and driver safety, are extremely important topics to study,” says Ken Buckeye, MnDOT program manager. “The potential for these trends to impact our revenue streams is also very significant. When you couple those trends with the federal mandate for a CAFÉ standard of 56 mpg by 2025, we are likely to see some profound impacts that reach across modes, jurisdictions, and funding mechanisms.”

Boies’s research is part of a multi-pronged study funded by MnDOT and the LRRB that analyzed the technological shifts altering surface transportation and the implications for Minnesota. Other contributors included CEGE professor and principal investigator David Levinson and associate professors Jason Cao and Yingling Fan of the Humphrey School of Public Affairs. Their high-level white papers are compiled in a final report: The Transportation Futures Project: Planning for Technology Change.

Taking the guesswork out of measuring winter operations

Being able to accurately and reliably estimate traffic conditions during snow events is critical to transportation agencies. Typically, state DOTs use measurements such as “time to bare pavement”—based on the visual inspection of plow drivers—to gauge the progress of snow operations. These estimates are limited, however, by the subjectivity and inconsistency of human-based measurements.

Now, new research sponsored by the MnDOT and led by University of Minnesota Duluth civil engineering professor Eil Kwon aims to take the guesswork out of assessing traffic conditions during winter weather events.

“Dr. Kwon’s research on a new approach to snow and ice performance reporting is exciting,” says Steve Lund, state maintenance engineer and director of the Office of Maintenance at MnDOT. “For quite a few years, MnDOT snowfighters have been reporting their performance through a visual review of the roadway conditions. Our snowfighters have a tough job—automating the performance reporting will remove that task from their duties. Also, looking at traffic returning to a ‘normal’ condition is truly the ultimate goal or outcome measure, and where we want to go.”

In the first phase of this project, researchers developed a prototype process that uses data on traffic speed, flow, and density collected by loop detectors in the Twin Cities metro area to estimate the point at which traffic patterns return to normal—an indicator that the roadway surface has “recovered.” In the newly published second phase, researchers further analyzed the traffic flow patterns during snow events under normal and snow conditions and refined the earlier prototype into a traffic-data-based measurement process for snow operations.

“We found that by comparing the variation patterns in traffic flow during a snow event with those during normal weather conditions, we could successfully identify the recovery status of the traffic flow at a given location,” Kwon says.

Based on their findings, the researchers developed a new process to identify the Normal Condition Regain Time (NCRT)—as an alternative to the traditional “time to bare pavement” measurement used to gauge the progress of maintenance operations during a winter weather event.

One advantage of the new process is that it can reflect how road surface conditions affect traffic flow differently during day and night periods. “Nighttime traffic flow patterns are substantially different from those during daytime periods,” Kwon says. “We identified normal traffic patterns separately for daytime and nighttime conditions to account for these differences in estimating the recovery status.”

Future research plans include the development of an operational version of the NCRT estimation system that can be used on a daily basis to analyze and improve snow operations, and the creation of an online version that can be used for coordinating snow operations in real time.

“There is a lot of potential to use these findings to make snow operations even more effective and efficient,” Kwon says. “For example, the analysis of the relationship between the NCRT measures and operational strategies such as plowing start time and methods could help further refine MnDOT’s winter maintenance strategies.”

For more information, download the technical summary (PDF) or the project’s final report.

Internship program helps students build skills, make connections

While some interns spend their days making copies and coffee runs, Caitlin Johnson spent her summer internship working on a research project exploring ways to improve safety in work zones.

Johnson, a fifth-year civil engineering student, is one of eight undergrads from the University of Minnesota who participated in this year’s Summer Transportation Internship Program.

Interns worked at MnDOT for 10 weeks and gained valuable transportation-related experience in areas ranging from designing roadways to measuring pavement movement. The program, offered jointly by CTS and MnDOT, is now in its fourth year.

This year’s participants included the following students, working in these MnDOT offices:

  • Caitlin Johnson, Office of Traffic, Safety and Technology
  • Mamadou Mbengue, Office of Environmental Stewardship
  • Ellie Lee, Office of Design
  • Luke Horsager, Bridge & Hydraulics Office
  • Sheue Torng Lee, Materials & Pavement Office
  • Trenton Pray, Materials & Concrete Office
  • Colleen Tamara Maluda, Environmental & Vegetation Office
  • Lucas Karri, Bridge Office

Johnson says her internship at MnDOT gave her the opportunity to study a topic that hasn’t been explored in-depth in the past and present those findings to industry professionals, including staff from the Federal Highway Administration. Luke Horsager, a civil engineering senior, spent his internship with the Bridge & Hydraulics Office equipping MnDOT boats with new GPS and Bluetooth software used for river mapping and monitoring bridge scour. He says he enjoyed gaining hands-on experience with the technology.

Heidi Gray, a MnDOT Metro District designer who supervised intern Ellie Lee in the Office of Design, says the internship program is valuable not only for the students, but also for the supervisors and MnDOT as a whole. While the interns gained important hands-on work experience and made valuable professional connections, MnDOT supervisors were introduced to talented young professionals.

“It’s really good to get young people in here and teach them what MnDOT is all about,” Gray says. “I personally have enjoyed the opportunity to teach and pass along what I know. It’s a good refresher.”

Application materials for the 2016 Summer Transportation Internship Program will be available on the CTS website in early November.

For more information, read the full article in the September issue of Catalyst or visit the internship program web page.

Roadway deaths and what Minnesota is doing about it

Joint article produced with MnDOT Research Services

Minnesota developed the Strategic Highway Safety Plan a decade ago, as the nation set a goal of reducing roadway deaths to less than one person per 100 million vehicle miles traveled. Last year, the nation still hadn’t reached this milestone (1.1 deaths occurred per 100 million miles), but Minnesota had lowered its fatality rate to 0.63 deaths (down from 1.48 deaths from 20 years ago).

“When I look at what Minnesota has done over the last 15 years compared to other states, we’re one of the few states that has a pretty consistent downward trend [in fatal crashes],” said Brad Estochen, MnDOT state traffic engineer, who gave an update on the highway safety plan during a recent presentation at the Roadway Safety Institute. “I think we’re doing some unique things here that have given us these results.”

These steps, Estochen says, have included passing a primary offense seatbelt law (seatbelt usage is now above 90 percent), investing in strategic safety infrastructure like high-tension cable median barriers and focused enforcement of DWI, speed and seatbelt laws.

Developing a plan

To best understand the risk factors for fatal and serious injury crashes, the state combined real-life crash data with input from professionals in engineering, law enforcement, emergency medical services, as well as everyday road users. The results showed that most crashes in the state involve multiple factors—such as road conditions, driver impairment and driver age.

Estochen said this approach of analyzing data and gaining stakeholder perspectives provided new insights into the dynamic causes of fatal and serious injury crashes.

In conjunction with the Departments of Health and Public Safety, MnDOT created a highway safety plan aimed at both professional stakeholders and the community that identified critical strategies for reducing serious traffic incidents. It has been updated in 2007 and 2014, most recently.

MnDOT also created a complimentary document for every county and MnDOT district (respectively called the county safety plan and district safety plan) to help local agencies identify locations and potential projects for reducing fatalities.

“We were the first state to take the SHSP concept to the local level. It was identified as a noteworthy practice by FHWA and other states are now starting to engage locals in developing specific plans for their use and implementation,” Estochen said.

The highway safety plan is an integral part of Toward Zero Deaths, the state’s cornerstone traffic safety program that has a goal of reducing fatalities to less than 300 per year by 2020.

Overall, Estochen said one of the best ways to reduce crashes in the state is to promote a culture of traffic safety — something he hopes the highway safety plan contributes to.

“Creating a traffic safety culture has nothing to do with building bigger and better roads,” he said. “It really has to do with making us as a state, as a community and as individuals responsible for our actions.”

MnPASS extension on I-35E shaped by U of M study

Based in part on a planning study conducted by U of M researchers at the Humphrey School of Public Affairs, MnDOT is extending MnPASS Express Lanes on Interstate 35E in the northeast Twin Cities. The extension will build on the project currently adding MnPASS lanes from Cayuga Street to Little Canada Road.

The study, funded by MnDOT and the Federal Highway Administration (FHWA), examined the feasibility of extending these MnPASS lanes from Little Canada Road north to County Road 96. During peak periods, MnPASS lanes provide a congestion-free option to transit vehicles, carpools, and motorcycles at no cost—and to single-occupant vehicles for a fee.

Led by Director Lee Munnich and Associate Director Frank Douma of the Humphrey School’s State and Local Policy Program, the U of M research team worked with Parsons Brinckerhoff to develop and evaluate several concepts for the MnPASS extension. The goal was to provide an option that reduced congestion for all users, including drivers in the general-purpose traffic lanes and transit users. The team also included Mary Vogel from the U’s Center for Changing Landscapes.

The primary challenge was how to handle MnPASS traffic through the recently reconstructed I-694/I-35E interchange. After going over several design options, the team recommended what it termed a “hybrid” option, which creates a continuous southbound MnPASS lane and a discontinuous northbound MnPASS lane through the interchange.

Researchers also engaged community stakeholders and corridor users to gather feedback about the proposed alternatives and worked to illustrate options that could facilitate greater transit, carpool, and vanpool use in communities along this section of I-35E.

Additional recommendations developed by the team—in partnership with representatives from MnDOT, the FHWA, and the Metropolitan Council—included continuing to educate community motorists about the MnPASS program as well as expanding transit options by creating more park-and-ride sites, encouraging mixed land uses, and building better walking and biking connections.

Based on these recommendations, MnDOT is moving forward with the hybrid option for the project, says Brad Larsen, director of the MnPASS Policy and Planning Program. MnPASS lanes will be added to southbound I-35E between County Road 96 and Little Canada Road; through the I-35E/I-694 commons area, the existing inside lane will be designated as a MnPASS lane during peak periods. There will be no MnPASS lane northbound through the commons area, but a lane will be added north of the interchange from County Road E to County Road J.

Construction on the extension project is expected to begin in March 2016, with the lanes slated to open in late 2016.

More information:

(Featured photo courtesy of David Gonzalez, MnDOT.)