Category Archives: Research

General research posts.

Reducing speeds to improve safety for work-zone flaggers

When drivers approach a roadway work zone at high speeds, they put the lives of work-zone flaggers at risk. To keep flaggers safe on the job, U of M researchers are looking for better ways to capture drivers’ attention—and compel them to slow down—as they approach flagger-controlled work zones.

Kathleen Harder, director of the Center for Design in Health, and John Hourdos, director of the Minnesota Traffic Observatory, identified and tested new work-zone warning elements to more effectively capture and sustain driver attention. The project was funded by MnDOT and the Minnesota Local Road Research Board.

The project began with a simulator study in which participants completed three drives, each featuring a work zone with different warning treatments. One condition was a traditional four-sign configuration currently used to warn drivers approaching work zones. The other two conditions featured a variety of new elements, including signage with new messaging such as  a “one-lane road ahead” sign with flashing LED lights, a dynamic speed warning sign equipped with a loud warning horn that sounded if drivers exceeded the speed limit, and portable rumble strips.

“Overall, we found that the new set of elements is more effective than the elements currently used to reduce driving speeds on the approach to a flagger-controlled work zone,” Harder says.

Although adding LED lights to the one-lane road sign had no significant effect on drivers’ speeds, findings indicated that the dynamic speed sign coupled with the horn was more effective than the dynamic sign alone.

To test these new elements under real-world conditions, the researchers conducted field tests evaluating two configurations in Minnesota work zones. The first configuration followed the minimum standards outlined in the Minnesota Manual on Uniform Traffic Control Devices. The second deployed signs employing new messaging and attention-getting devices, including a dynamic speed warning sign, horn, and rumble strips.

Findings showed that the combination of the dynamic speed warning sign and the horn successfully reduced the overall speed of vehicles approaching the work zone. The portable rumble strips did not cause any significant speed reduction, but this may have been related to their location downstream from the dynamic speed sign and horn.

“Our findings reveal that the new set of elements designed to capture driver attention—including new messaging, a dynamic speed trailer, and horn—had a significant influence on reducing driver speed,” Harder says. “The experimental layout practically eliminated high-speed outliers and successfully reduced the approach speed to the flag operator.”

Seven Pilot Projects to Change Transportation Practice in Minnesota

Roadside fencing that protects endangered turtles, a toolkit for identifying potentially acid-producing rock and a device that could save MnDOT $200 million a year in pavement damage are just a few of the advancements that MnDOT hopes to make in the near future, thanks to seven recently funded research implementation projects.

Each spring, the governing board for MnDOT’s research program funds initiatives that help put new technology or research advances into practice. This year’s picks aim to improve the environment, reporting of traffic signal data, notification of lane closures and the design and quality of pavements.

Here’s a brief look at the projects (full proposals here):

Protecting the Environment and Wildlife

  • To avoid the leaching of potentially acid-generating rock during excavation projects, MnDOT hopes to develop a GIS-based risk-screening tool that identifies areas where PAG rock might be encountered. Guidance will be developed for identifying and handling PAG rock.

Found in bedrock throughout the state – especially northern Minnesota, PAG minerals can release acid upon contact with air or water, a danger to aquatic and human life.

“Anytime we dig, there is the potential to expose this stuff,” said Jason Richter, chief geologist.

  • Reducing roadway access for small animals, including endangered turtles, is a priority for MnDOT and the Minnesota Department of Resources. MnDOT will analyze the effectiveness of different types of small animal exclusion fences tried across the state and develop a standard set of designs for future projects.
Improved Reporting of Traffic Signal Data
  • A centralized hub of traffic signal data could benefit future vehicle-to-infrastructure (V2I) applications and assist with the modeling of transportation project impacts. Methods and tools will be developed for a regional database of intersection control information that extracts data from MnDOT’s recently acquired Central Traffic Signal Control System and soon-to-be adopted Signal Performance Measure application.
Real-Time Notice of Lane Closures
  • In this pilot project, 20 MnDOT arrow board messages will be equipped with technology that automatically reports lane closures on 511 and highway message boards, providing more timely motorist notification.
Longer-Lasting Roads and Improved Quality Control
  • This summer, a new quality assurance device called the Rolling Density Meter will be deployed on several pavement projects, eliminating the need for destructive sample cores.
    “This is the ultimate in compaction control,” said Glenn Engstrom, Office of Materials and Road Research director. If contractors obtain the right level of density when paving asphalt roads, MnDOT could eliminate $200 million per year in premature road failure.
  • In 2018, MnDOT plans to require Intelligent Compaction (a pavement roller technology that reduces workmanship issues) on all significant asphalt projects. A vehicle-mounted mobile imaging device will be piloted that collects necessary supportive roadway alignment data, without the need for survey crews.
  • Upgrades to MnDOT’s pavement design software, MnPAVE, (incorporating recycled unbound and conventional base material properties) will help increase the service life of Minnesota roads.

New work-zone warning app featured on KARE 11

A new app that sends warning messages to drivers as they approach work zones was featured on KARE 11 News on Thursday. The app was developed by U of M researchers in a project sponsored by MnDOT.

The story aired as part of KARE 11’s #eyesUP campaign to end distracted driving.

The app works by pairing with Bluetooth low-energy tags placed in work zones, triggering audio warnings in smartphones that are within their range. This allows drivers to get a warning message without having to look down at their phones—or at warning devices such as changeable message signs outside their vehicles. And if a driver is being distracted by their phone, the app will interrupt whatever they are doing to provide a warning that a work zone is up ahead.

U of M researchers Chen-Fu Liao and Nichole Morris, who worked on the project, are interviewed in the story, along with Ken Johnson, work-zone, pavement marking, and traffic devices engineer at MnDOT.

New manual helps agencies count bike, pedestrian traffic

As part of an ongoing effort to institutionalize bicycle and pedestrian counting in Minnesota, MnDOT has published a new manual designed to help city, county, state, and other transportation practitioners in their counting efforts.

The Bicycle and Pedestrian Data Collection Manual, developed by University of Minnesota researchers and SRF Consulting Group, provides guidance and methods for collecting bicycle and pedestrian traffic data in Minnesota. The manual is an introductory guide to nonmotorized traffic monitoring designed to help local jurisdictions, nonprofit organizations, and consultants design their own programs.Bicycle and Pedestrian Data Collection Manual

Topics covered in the manual include general traffic-monitoring principles, bicycle and pedestrian data collection sensors, how to perform counts using several types of technologies, data management and analysis, and next steps for nonmotorized traffic monitoring in Minnesota. Several case studies illustrate how bicycle and pedestrian traffic data can be used to support transportation planning and engineering.

The manual was completed as part of the third in a series of MnDOT-funded projects related to the Minnesota Bicycle and Pedestrian Counting Initiative, a collaborative effort launched by MnDOT in 2011 to encourage nonmotorized traffic monitoring across the state. U of M researchers, led by professor Greg Lindsey at the Humphrey School of Public Affairs, have been key partners in the initiative since its inception.

In addition to the manual, U of M researchers have published a final report outlining their work with MnDOT on this project. Key accomplishments include:

  • A new statewide bicycle and pedestrian traffic-monitoring network with 25 permanent monitoring locations
  • A district-based portable counting equipment loan program to support MnDOT districts and local jurisdictions interested in nonmotorized traffic monitoring
  • Minnesota’s first Bicycle and Pedestrian Annual Traffic Monitoring Report
  • A MnDOT website for reporting annual and short-duration counts that allows local planners and engineers to download data for analysis
  • Provisions added to MnDOT equipment vendor agreements that enable local governments to purchase bicycle and monitoring equipment
  • Annual training programs for bicycle and pedestrian monitoring
  • Provisions in the Statewide Bicycle System Plan and Minnesota Walks that call for bicycle and pedestrian traffic monitoring and creation of performance measures based on counts

“This is an excellent resource that steps through all aspects of managing a count program, and I think it will be very helpful to other states and organizations that want to implement their own programs,” says Lisa Austin, MnDOT bicycle and pedestrian planning coordinator. “Since Minnesota is a leader in counting bicycle and pedestrian traffic, it also fulfills what I think is an obligation to share our story with others.”

Work-zone warnings could soon be delivered to your smartphone

Imagine that you’re driving to work as usual when your smartphone announces, “Caution, you are approaching an active work zone.” You slow down and soon spot orange barrels and highway workers on the road shoulder. Thanks to a new app being developed by University of Minnesota researchers, this scenario is on its way to becoming reality.

“Drivers often rely on signs along the roadway to be cautious and slow down as they approach a work zone. However, most work-zone crashes are caused by drivers not paying attention,” says Chen-Fu Liao, senior systems engineer at the U’s Minnesota Traffic Observatory. “That’s why we are working to design and test an in-vehicle work-zone alert system that announces additional messages through the driver’s smartphone or the vehicle’s infotainment system.”

As part of the project, sponsored by MnDOT, Liao and his team investigated the use of inexpensive Bluetooth low-energy (BLE) tags to provide in-vehicle warning messages. The BLE tags were programmed to trigger spoken messages in smartphones within range of the tags, which were placed on construction barrels or lampposts ahead of a work zone.

17245-NR20F5

The researchers also developed two applications for the project. First, they designed a smartphone app to trigger the audio-visual messages in vehicle-mounted smartphones entering the range of the BLE work-zone tags. A second app allows work-zone contractors to update messages associated with the BLE tags remotely, in real time, to provide information on current conditions such as workers on site, changes in traffic, or hazards in the environment.

Field tests proved the system works. “We found that while traveling at 70 miles per hour, our app is able to successfully detect a long-range BLE tag placed more than 400 feet away on a traffic barrel on the roadway shoulder,” Liao says. “We also confirmed the system works under a variety of conditions, including heavy traffic and inclement weather.”

“This was a proof of concept that showed that smartphones can receive Bluetooth signals at highway speeds and deliver messages to drivers,” says Ken Johnson, work-zone, pavement marking, and traffic devices engineer at MnDOT. “Future research will look into how we should implement and maintain a driver alert system.”

This future work includes using the results of a human factors study currently under way at the U’s HumanFIRST Laboratory to create recommendations for the in-vehicle message phrasing and structure. Then, researchers plan to conduct a pilot implementation with multiple participants to further evaluate the system’s effectiveness.

According to MnDOT, another phase of the project may investigate how to effectively maintain the BLE tag database. This phase could also investigate implementation options, such as how MnDOT can encourage drivers to download and use the app.

Taconite byproduct reduces road wear from studded tires

In a recent project, the Alaska Department of Transportation (DOT) used a byproduct of Minnesota’s taconite mining industry for a section of the Alaska Glenn Highway.

The taconite byproduct—Mesabi sand—serves as the aggregate of a sand-seal treatment for a 4,600-foot stretch of the highway just north of Anchorage. Sand seals are an application of a sealer, usually an emulsion, immediately followed by a light covering of a fine aggregate (the sand).

“Our goal was to explore pavement preservation measures that extend pavement life and that also resist studded tire wear,” says Newton Bingham, central region materials engineer with the Alaska DOT. “Studded tires are allowed from mid-September until mid-April, and they cause rapid pavement wear.”

For the project, the Alaska DOT obtained sample pavement cores from the test area in 2014. Researchers then applied sand seals with two different hard aggregates—calcined bauxite and the Mesabi sand—to the surface of the cores to evaluate the effectiveness of each treatment.

Larry Zanko, senior research program manager of the Natural Resources Research Institute (NRRI) at the University of Minnesota Duluth, was the on-site representative for the taconite sand analysis. NRRI focuses on strategies to recover and utilize mineral-resource-based byproducts such as taconite and find potential beneficial end-uses for them.

“Taconite is one of the hardest natural aggregates,” he says. “Minnesota’s taconite mining industry generates tens of millions of tons of byproduct materials every year that could be used as pavement aggregate. Friction aggregates could be a higher-value niche for the industry.”

Testing of the sand-seals showed similar wear resistance for both types of aggregates. “We chose taconite sand since it is available from Minnesota as an industrial byproduct, whereas calcined bauxite sand has to be imported from nations on the Pacific Rim and costs more due to shipping,” Bingham says.

The Alaska DOT reports good performance to date on Glenn Highway and is funding ongoing pavement wear measurement.

NRRI researchers are also studying the use of taconite for other pavement applications. Funded by MnDOT, Zanko’s team developed (and later patented) a taconite compound for repairing pavement cracks and patching potholes (see an article the September 2016 Catalyst). The long-lasting patches reduce maintenance costs and traffic disruption. In continuing work funded by the Minnesota Local Road Research Board, researchers will refine the repair compound and develop and field-test a low-cost mechanized system for pavement and pothole repairs.

Videos trace progress in traffic operations, pavement design

Last month, CTS debuted two videos about the many contributions U of M researchers have made—and are still making—in traffic operations and pavement design.

The videos are one of the ways CTS is marking 30 years of transportation innovation. Our goal is to show how research progresses over time—from curiosity to discovery to innovation. The videos also show how U of M research meets the practical needs of Minnesotans in the Twin Cities metro and throughout the state.

The first video focuses on improving traffic operations, a research focus since our earliest days. Professor Emeritus Panos Michalopoulos invented Autoscope® technology to help transportation agencies capture video images of traffic and analyze the information, enabling better traffic management. Autoscope was commercialized in 1991, and the technology has been incorporated into products sold and used worldwide.

Current traffic operations research builds on this strong foundation. For example, the U’s Minnesota Traffic Observatory, directed by John Hourdos, develops data collection tools such as the Beholder camera system. The system is deployed on high-rise rooftops overlooking a stretch of I-94 in Minneapolis—an area with the highest crash frequency in Minnesota—to help the Minnesota Department of Transportation reduce congestion and improve safety.

The second video showcases U of M research on pavement design. Developing pavements that can stand up to Minnesota’s harsh climate is a continuing priority for researchers, whose work has led to new methods, tools, and specifications to extend pavement life. The video also looks at how research teams are pushing the envelope with use of materials such as taconite waste and graphene nano-platelets for pavement applications.

 

Bicycle commuting improves public health, reduces medical costs

According to the results of a new study, bicycle commuting in the Twin Cities metropolitan area reduces chronic illness and preventable deaths, saving millions of dollars annually in medical costs.

The findings are one component of a multifaceted project funded by MnDOT. In the final report, researchers in several U of M departments provide a comprehensive understanding of the economic impact and health effects of bicycling in Minnesota.

“MnDOT has long identified bicycling as an important part of the state’s multimodal transportation system,” says Tim Henkel, modal planning and program management assistant commissioner. “This first-ever study generated new information that will inform policy and program strategies on bicycling as we determine levels of future investment.”

Xinyi Qian, an Assistant Extension Professor in the U’s Tourism Center, was the project’s principal investigator. Dr. Mark Pereira of the School of Public Health, one of the co-investigators, led the health component of the project.

Pereira’s team began by measuring the amount of bicycle commuting among Twin Cities adults using data from the 2014 Minnesota State Survey. (The counties included were Anoka, Carver, Dakota, Hennepin, Ramsey, Scott, and Washington.) The team found that 13.4 percent of working-age metro-area residents (244,000 adults) bicycle to work at least occasionally, and the average bicycle commuter rides 366 miles per year.

The researchers next estimated the number of deaths prevented from that amount of bicycling using the Health Economic Assessment Tool developed by the World Health Organization (WHO). Their analysis found that bicycle commuting in the metro area prevents 12 to 61 deaths per year, saving $100 million to $500 million annually. “At current levels, roughly 1 death per year is prevented for every 10,000 cyclists,” he says.

The WHO tool estimates savings from prevented deaths but not from prevented disease. To estimate the effect of bicycling commuting on illness, researchers conducted an online survey of Twin Cities cyclists; participants also included three commuter groups and a bicycle parts manufacturer.

“We learned that bicycling is linked to lower risk of metabolic syndrome, obesity, and hypertension,” Pereira says. “For example, taking three additional bicycle trips per week is associated with 46 percent lower odds of metabolic syndrome, 32 percent lower odds of obesity, and 28 percent lower odds of hypertension.”

The illness assessment provides relative risk estimates that planners can use in cost-benefit analyses. “Current methods only consider risk reductions related to death rates, so the benefit of infrastructure projects is underestimated,” Pereira says. “By providing an estimate of the risk reductions for diabetes and heart disease related to cycling, we provide an input that will help project planners more accurately represent the benefits of these projects.”

While the research was conducted in the Twin Cities, the methods can be used in other locations and to compare changes over time. “The findings also provide a foundation for transportation and health care officials to take action,” Pereira says, citing several options:

  • Promote active transportation through policies and intervention programs, e.g., employer incentives.
  • Develop consistent safety education and encouragement messages statewide to increase bicycle commuting.
  • Continue to encourage and implement safe bicycling to school and access to bicycles for youth across the state.

Transportation spending: How does Minnesota compare with other states?

Transportation funding continues to be a contentious issue in Minnesota: Are we spending enough, too little, too much? One way to help answer that question is to compare spending with other states.

“A simple comparison, however, may not accurately reflect the real level of transportation funding across the states,” says Jerry Zhao, an associate professor in the Humphrey School of Public Affairs. “States face different levels of demand and costs due to different geographic, demographic, or labor market conditions.”

To better understand the factors that influence the transportation funding level, Zhao and Professor Wen Wang at Rutgers University developed a cost-adjusted approach to systematically compare highway expenses among states. They found that while Minnesota spends more than average on highways, its spending level actually ranks low in cost-adjusted measures.

“We controlled for the effects of some major cost factors, such as demographics and natural weather conditions, which are outside of the control of state and local officials,” Zhao explains. “We found that natural weather conditions have a significant impact on highway spending—a lower winter temperature is associated with higher highway expenditures.”

The effect of population size isn’t as straightforward: “There is some impact of economy of scale, but only to a certain threshold,” he says. While urban areas have greater complexity, the higher population density is associated with less spending per capita, probably due to spreading the costs across a greater population.

The analysis also found that state and local governments tend to spend less on highways when they are under fiscal stress, and states with a higher gross domestic product (GDP) appeared to spend more on highways per capita. “Essentially, highway investment decisions may be greatly influenced by the economic fluctuations and fiscal stresses faced by a state,” he says.

According to unadjusted 2010 data, Minnesota ranks 8th on highway spending per capita and 18th on its share of statewide highway spending in GDP. “But after adjusting for those factors that are largely out of control by transportation policy, we found that Minnesota’s rankings drop to 37th on highway spending per capita and 41st on the share of highway spending in GDP,” Zhao says. “This suggests that the relatively high level of highway spending in Minnesota is largely driven by the cost factors of demographics and weather conditions.”

“This study confirms what MnDOT has experienced and that transportation financing is more complicated than one would expect,” says Tracy Hatch, MnDOT deputy commissioner. “Not only is Minnesota’s transportation system significantly undercapitalized—there are considerable financial impacts from factors outside of our control.”

The analysis was conducted as part of the U’s Transportation Policy and Economic Competitiveness Program (TPEC). In previous work, TPEC researchers created the Minnesota Transportation Finance Database, which compiles data about Minnesota’s transportation finance and shows the change of transportation spending in Minnesota over time.

Thicker may not equal stronger when building concrete roadways

Transportation agencies have long placed high importance on the thickness of their concrete roadways, making it a major focus of control and inspection during construction. While it is commonly believed thicker concrete pavements last longer, there is little data to support this claim.

“One big reason for the lack of data on the relationship between concrete pavement thickness and performance is the destructive nature of these measurements,” says Lev Khazanovich, a former professor in the University of Minnesota’s Department of Civil, Environmental, and Geo- Engineering. “Concrete thickness is typically assessed by coring—a destructive, expensive, and time-consuming test that only offers widely spaced measurements of thickness.”

In a MnDOT-funded study, U of M researchers set out to fill this knowledge void by leveraging recent advances in the nondestructive testing of pavements that allow for large-scale, rapid collection of reliable measurements for pavement thickness and strength. They conducted four evaluations on three roadways in Minnesota using ultrasonic technology to collect more than 8,000 measurements in a dense survey pattern along with a continuous survey of observable distress.

“We found that both pavement thickness and stress measurements are highly variable, with a half-inch of variation in thickness about every 10 feet,” Khazanovich says. “Interestingly, three of the four surveys averaged less than design thickness, which is contrary to typical accounts of contractors building slightly thicker slabs in order to avoid compensation deductions.”

Data analysis showed that exceeding design thickness did not seem to increase or decrease pavement performance. However, a measurement of pavement strength and quality known as “shear wave velocity” did produce valuable findings. “A drop in the shear wave velocity strength measurement corresponded to an increase in observable pavement distresses such as cracking and crumbling,” Khazanovich explains. “This was especially apparent when we were able to easily identify locations of construction changes, where significant changes in shear wave velocity matched up with observable distress.”

The results of this study illustrate the importance of material quality control and uniformity during construction, since alterations in pavement strength and quality may significantly influence pavement performance. In addition, researchers say that despite inconclusive thickness results, it is still important that pavement has significant thickness to carry its intended traffic load over its service life. Finally, the study demonstrates that new methods of ultrasonic shear wave velocity testing are useful for identifying changes in construction and design that could lead to higher rates of pavement distress.