Tag Archives: implementation

Asphalt Delivery Tracking Goes Digital with Some 2020 Construction Projects

MnDOT construction projects require tons of hot mix asphalt each year, with over 188 road and bridge projects in the 2020 construction season alone.

Historically, plant mixed asphalt has been weighed, tracked and paid for with computer-generated paper tickets. Paper ticketing isn’t an ideal process for a variety of reasons—on-site ticket collection poses safety risks, tickets can be easily lost, and data must be tabulated manually, just to name a few.

Continue reading Asphalt Delivery Tracking Goes Digital with Some 2020 Construction Projects

Seven Pilot Projects to Change Transportation Practice in Minnesota

Roadside fencing that protects endangered turtles, a toolkit for identifying potentially acid-producing rock and a device that could save MnDOT $200 million a year in pavement damage are just a few of the advancements that MnDOT hopes to make in the near future, thanks to seven recently funded research implementation projects.

Each spring, the governing board for MnDOT’s research program funds initiatives that help put new technology or research advances into practice. This year’s picks aim to improve the environment, reporting of traffic signal data, notification of lane closures and the design and quality of pavements.

Here’s a brief look at the projects (full proposals here):

Protecting the Environment and Wildlife

  • To avoid the leaching of potentially acid-generating rock during excavation projects, MnDOT hopes to develop a GIS-based risk-screening tool that identifies areas where PAG rock might be encountered. Guidance will be developed for identifying and handling PAG rock.

Found in bedrock throughout the state – especially northern Minnesota, PAG minerals can release acid upon contact with air or water, a danger to aquatic and human life.

“Anytime we dig, there is the potential to expose this stuff,” said Jason Richter, chief geologist.

  • Reducing roadway access for small animals, including endangered turtles, is a priority for MnDOT and the Minnesota Department of Resources. MnDOT will analyze the effectiveness of different types of small animal exclusion fences tried across the state and develop a standard set of designs for future projects.
Improved Reporting of Traffic Signal Data
  • A centralized hub of traffic signal data could benefit future vehicle-to-infrastructure (V2I) applications and assist with the modeling of transportation project impacts. Methods and tools will be developed for a regional database of intersection control information that extracts data from MnDOT’s recently acquired Central Traffic Signal Control System and soon-to-be adopted Signal Performance Measure application.
Real-Time Notice of Lane Closures
  • In this pilot project, 20 MnDOT arrow board messages will be equipped with technology that automatically reports lane closures on 511 and highway message boards, providing more timely motorist notification.
Longer-Lasting Roads and Improved Quality Control
  • This summer, a new quality assurance device called the Rolling Density Meter will be deployed on several pavement projects, eliminating the need for destructive sample cores.
    “This is the ultimate in compaction control,” said Glenn Engstrom, Office of Materials and Road Research director. If contractors obtain the right level of density when paving asphalt roads, MnDOT could eliminate $200 million per year in premature road failure.
  • In 2018, MnDOT plans to require Intelligent Compaction (a pavement roller technology that reduces workmanship issues) on all significant asphalt projects. A vehicle-mounted mobile imaging device will be piloted that collects necessary supportive roadway alignment data, without the need for survey crews.
  • Upgrades to MnDOT’s pavement design software, MnPAVE, (incorporating recycled unbound and conventional base material properties) will help increase the service life of Minnesota roads.

Drones, slope slide prevention among MnDOT’s research implementation picks

Developing the guidance needed to begin using drones  for bridge inspections statewide is among the Minnesota Department of Transportation’s latest batch of research implementation projects.

MnDOT recently announced the selection of a dozen research implementation projects for funding in Fiscal Year 2017.  In addition to continuing MnDOT’s pioneering drone research, top initiatives aim to improve the accuracy of bridge load ratings and map slopes statewide to identify locations that are vulnerable to flash flooding.

Each winter, MnDOT solicits proposals from staff who want to put local or national research into practice in their day-to-day work.

MnDOT is researching how data and images collected by drones, such as the Aeryon Skyranger shown here, could aid bridge inspectors.
MnDOT is researching how best to integrate drones into its bridge inspection procedures.

The state research program’s governing board then selects projects for funding based on benefits, impacts on the department and support from management.

Project champions take previously proven concepts and help MnDOT turn them into useful practices and procedures to make the state’s transportation system better. Funds can be used for equipment, consultant services or researcher assistance.

“The research implementation program fills the gap between research and deployment of new methods, materials and equipment,” Bruce Holdhusen, MnDOT Research Services senior engineer, said.

Here are the 12 newly funded research implementation projects by category:

Bridge and Structures

  • Improving Quality of Bridge Inspections Using Unmanned Aircraft Systems (UAS)
  • Prestressed Concrete Beam Shear Rating
  • OmniScan Phased Array Ultrasonic Corrosion Imaging System

Environmental

  • MnDOT Slope Vulnerability Assessments

Maintenance Operations

  • Ultra-thin Bonded Wearing Course (UTBWC) Snow and Ice and Wind Effects

Materials and Construction

  • Cold In-Place Recycling (CIR) for Bituminous Over Concrete (BOC)
  • Geogrid Specification for Aggregate Base Reinforcement
  • Balanced Design of Asphalt Mixtures
  • Cone Penetration Testing (CPT) Design Manual for State Geotechnical Engineers

Policy and Planning

  • One-year Pilot Test and Evaluation of ASTM DOT Package Compass Portal

Traffic and Safety

  • Improve Traffic Volume Estimates from Regional Transportation Management Center (RTMC)
  • Understanding Pedestrian Travel Behavior and Safety in Rural Settings

MnDOT announces research implementation projects

Minnesota’s next round of research implementation projects will reduce the spread of noxious weeds along state highways, improve the quality of asphalt on Minnesota roads and enhance the inspection of state bridges.

MnDOT’s Transportation Research Innovation Group (TRIG) has announced 15 projects for funding in Fiscal Year 2015. (Project descriptions below.)

Each winter, MnDOT solicits proposals from staff who want to put local or national research into practice in their day-to-day work.

“Certain departments have problems they’ve been working on for a long time and they’ve spun their wheels or not had the staff resources to get something done,” said MnDOT Research Services & Library Project Advisor Bruce Holdhusen, who helps employees develop their proposal plans.

One implementation project: Further testing and demonstration of portable traffic control devices (auto flaggers) to increase their usage by highway maintenance crews.
One implementation project will complete testing and demonstration of portable traffic control devices (auto-flaggers) to increase their usage by highway maintenance crews.

MnDOT provides the funding needed for equipment, consultant services or researcher assistance. Supervisors also must sign off that they’ll make time for the staff member to implement the practice.

“Implementation means it’s changing the way some practitioner does their job,” Holdhusen said. “It’s not just trying something new; it’s got to stick.”

Highlights of this year’s projects:

  • Installation of GPS units on MnDOT mowers to alert highway maintenance crews to areas of noxious weeds. This is anticipated to cut herbicide usage in half.
  • Purchase of 3D sonar equipment for underwater bridge inspection, which is currently performed by engineer-divers.
  • Selection of an alternative, European-branded center-line rumble strip (Sinusoidal) that produces less stray highway noise.
  • Implementation of an innovative asphalt-quality test, developed by MnDOT’s Office of Materials and Road Research, to assess the cold temperature-cracking properties of asphalt mixes proposed by contractors.
  • Advertisement of state rest area amenities on highway notification signs. This pilot project will target 13 rest stops.

The complete list of projects, by category:

Environment
Maintenance Operations and Security
Materials and Construction
Multimodal
Bridge and Hydraulics
Traffic and Safety

Bridging the gap between research and implementation

The end goal of transportation research, broadly speaking, is to see the results implemented — that is, to transfer the knowledge generated through research to those who can put it to good use. Research Services and the Center for Transportation Studies use a variety of tools to help disseminate research results: our respective websites, email lists, social media, newsletters and this blog, to name a few. But what do we know about how our audiences actually interact with these various channels of communication?

At the Transportation Research Board Annual Meeting earlier this year, researchers from Nebraska presented the findings of a very interesting survey on how engineers and other transportation practitioners prefer to learn about research results. Their presentation, entitled “What Engineers Want: Identifying Transportation Professionals as an Audience for Research,” is available via Slideshare. (Unfortunately, WordPress won’t let me embed it.)

Some key takeaways from the survey:

  • Practitioners overwhelmingly prefer one- or two-page technical briefs to other types of research communication products. (Other popular formats include presentations, video highlights and webinars.)
  • By a wide margin, practitioners use search engines like Google or Bing to seek research results (compared to other options like contacting a colleague or university faculty).
  • Practitioners are mostly interested in information on how to implement findings, as well as cost-benefit analyses of implementation.

The survey results present what I think is a fairly realistic and nuanced picture of the audience for transportation research; they’re also consistent with our (Research Services) own internal research on the issue. The bottom line is that research results need to be condensed into usable bits of information and made easily accessible in a variety of formats. People want information they can use, without having to dig for it. More importantly, they want it in whatever their preferred format is, whether it be print, email, Web, RSS, social media or in-person presentations.

Interestingly, Research Services already produces the kind of two-page technical briefs described in the survey. We call them “technical summaries,” and they are among our most popular products. We generally produce a technical summary for each research project we manage, and post them on our website alongside the full research report. Reading a two-page summary, written in layman’s terms, is certainly easier than poring over research reports that oftentimes number in the hundreds of pages, so it’s not surprising that even those with a strong engineering background prefer the format.

As a side note, last Friday we published a batch of 10 new technical summaries — along with two new transportation research syntheses, which are a type of literature review. Topics range from pedestrian and bicycle safety in roundabout crossings to the effect of intelligent lane control systems on driver behavior. You can check the full list on the Research Services main page.

Now it’s your turn: What forms of communication do you think are most effective at reaching transportation practitioners? Which ones do you prefer? Let us know in the comments.