All posts by Nick

Nick Busse is the communications principal for the Mississippi Watershed Management Organization. He lives in Minneapolis, Minn. Opinions expressed via his personal social media accounts do not represent his employer.

Study reveals how Minnesota industries rely on transportation

Results of a newly released MnDOT research report shed new light on the role transportation plays in our state’s economic competitiveness, and highlight the unique challenges faced by some of the state’s major industry clusters.

The report, authored by Professor Lee Munnich of the University of Minnesota’s Humphrey School of Public Affairs, underscores the importance of a reliable transportation system in facilitating economic growth. Munnich examined the impact of transportation on Minnesota’s competitive industry clusters — geographically concentrated, interconnected groups of companies and institutions that share knowledge networks, supply chains and specialized labor pools.

MnDOT Research Project Engineer Bruce Holdhusen said MnDOT’s goal with the study was to discover how its investment decisions could help support job creation and economic prosperity.

“The idea is to look at the companies and industries that are already bringing money into the state, figure out what their transportation challenges are, and then use that information to see what kind of investments we could make to support their continued growth,” Holdhusen said.

MnDOT is incorporating the results of the study into its statewide freight planning. The industry clusters-approach also is being used by MnDOT in a statewide effort to talk with manufacturers, other shippers, and carriers about their transportation priorities and challenges.  MnDOT will focus on its Metro District starting this summer.  Two similar projects have been undertaken in Greater Minnesota, with a third study starting later this year. (Results from one study, in southwest Minnesota/District 8, are available online.)

The full report is available online, and examines a wide range of industries, including forest products, medical devices, robotics and processed foods. We’ve pulled out a few interesting tidbits below.

Recreational Vehicles (Northwest Minnesota)

A semi truck driving on a snowy highway.
Minnesota winters are great for snowmobiling, but not always great for shipping snowmobiles. (Photo by Dave Gonzalez, MnDOT)

As noted in the report, Minnesota’s extreme winter weather poses unique challenges to its economic competitiveness. Ironically, nowhere is this more evident than in the state’s snowmobile-producing northwest corner.

Polaris and Arctic Cat (together with smaller, more specialized firms like Mattracks) employ thousands of Minnesotans, producing a wide variety of recreational vehicles and accessories that are sold and distributed all over the world. While the companies’ snowmobiles might fare well in a blizzard, the trucks that deliver them don’t. A bad snowstorm can cause delays in both supply and product shipments; it can also prevent employees from getting to work, or even shut down a plant altogether. On a larger scale, these issues make it difficult for the companies to expand at their ideal rates.

The report notes that MnDOT’s 511 system is an important source for many companies to identify and respond to potential shipping delays. It recommends continuous improvements to the system.

The Mayo Clinic (Rochester Area)

Metal FedEx containers at an airport.
Air carriers like FedEx have limited capacity for refrigerated shipments, which creates challenges for shipping medical lab samples. (Photo by Dave Gonzalez, MnDOT)

The Mayo Clinic has become synonymous with the Rochester metropolitan area, and for good reason: it employs 37,000 residents and brings in 500,000 unique patients each year from all 50 U.S. states and 150 countries. As you might imagine, generating that much activity in a community of only 110,000 people creates some unique and significant transportation challenges.

Unlike most competitor institutions (Johns Hopkins in Baltimore, for example), the Mayo clinic is located in a relatively small metropolitan area. The local airport has an older navigation system and offers less direct commercial air service. As a result, it depends on high-quality transit and freight service to help accommodate the constant flow of visitors and supplies. The shipping of highly perishable lab samples is also a challenge, as air carriers have limited capacity for refrigeration. Finally, adverse weather conditions can affect emergency services dispatchers’ ability to send fast modes of transportation such as helicopters.

Hospitality and Tourism (Brainerd Lakes Area)

Boats docked on a lake at dawn.
Lakeside resorts a great way to enjoy Minnesota’s scenic beauty — but getting there can be a challenge. (Photo by Dave Gonzalez, MnDOT)

The oil boom in North Dakota has generated a lot of wealth in a short amount of time, and resorts like the Grand View Lodge in Nisswa would love to capture some of it by enticing new vacationers from the west. The trouble is, the area is inconvenient to reach from that direction.

A four-lane highway makes it easy for visitors from St. Cloud or the Twin Cities to visit resorts in the Brainerd area, but travelers coming from the Dakotas face a more circuitous route. Air travel options help to an extent, as visitors from even farther distances can fly into Fargo and then drive in from there. St. Cloud also has daily air service from Chicago, which helps maintain a constant flow of visitors.

Related Materials

The Local Road Research Board is now on YouTube

The Local Road Research Board, Minnesota’s unique city- and county-funded transportation research program, now has its own YouTube channel.

The LRRB has been around since 1959, funding research into transportation issues that affect local governments in Minnesota. In recent years, the LRRB has also produced a number of videos designed to educate the public and to provide training to local transportation practitioners.

Check out the latest videos and subscribe to the LRRB channel by clicking here.

‘High Bridge’ study yields insights on bridge deck maintenance

One of St. Paul’s most iconic landmarks is helping the Minnesota Department of Transportation find the most cost-effective methods of maintaining concrete bridge decks.

For the last three years, the Smith Avenue High Bridge, which connects downtown St. Paul with the city’s west side, has served as a test bed for a variety of products used to seal cracks on bridge decks. Through MnDOT-funded research, various sealant products have been applied on different areas of the bridge deck, with their performance tracked over time.

“This project will help MnDOT make cost-effective maintenance decisions to preserve its current bridge infrastructure,” said Sarah Sondag, a senior engineer with MnDOT Bridge Operations Support.

The bridge was chosen in part because of its large deck area, which allowed for the application of 12 sealant products and three control sections.

Sealing deck cracks is a routine preventive maintenance task for bridge crews. Left untreated, cracks can allow moisture and chlorides to penetrate the bridge deck, which can lead to the corrosion of reinforcing steel, deck deterioration and the need for early deck replacement.

researcher testing permeability of a deck crack on the Smith Avenue Bridge
A researcher tests the permeability of a crack on the deck of the Smith Avenue High Bridge in St. Paul.

MnDOT maintains a list of approved bridge deck crack sealing products, but until now had little data on how well each one performs in the field. The recently published report also examined several products that are not currently on the Approved Products List.

Among the study’s findings: some of the products on MnDOT’s Approved Products List did not perform as well as other products that are not currently on the list. MnDOT is using the results of the study to update its qualification process for products to get on the approved list. Insights gained from studying application techniques will also be used to update MnDOT’s bridge maintenance manual.

*Note: This blog post was adapted from an article and technical summary that will be featured in the upcoming issue of the Accelerator newsletter.

More:

Parking availability system takes aim at truck driver fatigue

MnDOT, in partnership with the Federal Highway Administration, is test-deploying a high-tech system to help combat drowsy driving and keep truck drivers in compliance with federal hours-of-service regulations.

Developed by researchers at the University of Minnesota, the prototype system lets  drivers know when parking spaces are available at rest stops ahead. It has been deployed at several locations along the heavily traveled I-94 corridor between Minneapolis and St. Cloud.

From today’s MnDOT news release:

ST. PAUL, Minn. – New technology along the I-94 corridor west and northwest of the Twin Cities is helping truckers find safe places to park. Three Minnesota Department of Transportation rest areas are now equipped with automated truck stop management systems that tell truck drivers when parking spaces are available.

The technology will improve safety, lead to better trip and operations management by drivers and carriers and help MnDOT and private truck stop owners manage their facilities more effectively, according to John Tompkins, MnDOT project manager.

“So far, the results have been positive. We’ve had 95 percent accuracy in determining the availability of spaces,” he said.

Federal hours of service rules require truck drivers to stop and rest after 11 hours of driving. Tompkins said if drivers continue to drive beyond 11 hours, they could become fatigued and be forced to park in unsafe locations such as freeway ramps. They could also face legal penalties.

The problem of truck driver fatigue recently took the national spotlight when an allegedly drowsy driver slammed his semitrailer into a limousine carrying actor-comedian Tracy Morgan and six others. One passenger died in the crash.

The parking availability project is led by MnDOT Freight Project Manager John Tompkins and University of Minnesota professor Nikolaos Papanikolopoulos. MnDOT Research Services & Library produced the video above, which demonstrates the system in action. You can learn more about the project on the Center for Transportation Studies website.

Chip sealing: not just for local roads anymore (video)

Chip-sealing — spraying an asphalt emulsion over existing pavement and then covering it with fine aggregate — is a cost-effective alternative to resurfacing asphalt pavements. Traditionally, however, it has only been used on rural and low-volume urban roadways.

During a recent visit to MnROAD, we filmed a road crew chip-sealing a test section on I-94 and spoke with MnDOT Research Project Supervisor Tom Wood, who explained why chip sealing can also be an effective treatment for high-volume roadways.

*Note: This story was updated on 08/12/2014 to clarify that the chip sealing shown in the video involves spraying an “asphalt emulsion” rather than “hot liquid asphalt,” as stated in an earlier version of this post.

What it’s like to drive a 40-ton truck in circles for science (video)

The only way to test pavements is to destroy them — slowly and painstakingly, one moving vehicle at a time. At MnROAD, the state’s world-renowned pavement research facility, the bulk of this monotonous-but-necessary work is performed by live traffic passing through Albertville on I-94. But on the facility’s 2.5-mile low volume road test track, which simulates rural road conditions, more controlled methods are preferred.

Doug Lindenfelser is one of several MnROAD employees who take turns driving an 80,000-pound semi tractor trailer in laps around the closed-loop low-volume track. The truck is loaded to the maximum allowable weight limit on Minnesota roadways. As it passes over the facility’s 23 distinct low-volume test cells, an array of sensors capture data on the pavement’s performance, which researchers then use to design stronger, longer-lasting roads. The truck only drives on the inside lane; that way, the outside lane can be used as an “environmental lane” to compare  damage caused by loading  vs. damage caused by environmental factors.

He has other duties as well, but on a given day, Doug might drive the truck 60 or 70 times around the low-volume road test track. It might not sound very exciting, but as Doug explains, some days his job can be quite interesting. We interviewed him on camera during a recent visit to MnROAD. The resulting video is available above and on our YouTube channel.

For those who might be wondering, all this diligent destruction of pavement has paid off. It is estimated that MnROAD’s first phase of research (from 1994-2006) has resulted in cost savings of $33 million each year in Minnesota and $749 million nationally. Cost savings from its second phase (2007-2015) are being calculated, and the facility is scheduled to enter its third phase in 2016.

Learn More:

Watch MnDOT slide a 3.5-million pound bridge into place

It’s old news already, but any blog about transportation research and innovation in Minnesota would be remiss if it didn’t mention this amazing video of MnDOT workers sliding the new Larpenteur Avenue Bridge into place late last week.

The slide-in method is an accelerated bridge construction technique that allowed MnDOT to speed up the project and cut the the amount of time the bridge will be closed by more than half. It’s also cheaper and safer. This project marks the first time the slide-in method has been used in the state.

More:

Rumble Strips vs. Mumble Strips: Noise Comparison (Video)

We recently blogged about a research project to evaluate a new type of rumble strip that produces significantly less external noise than traditional designs. The above video, shot near Thief River Falls, Minnesota, shows a comparison between traditional rumble strip designs and the newer, “sinusoidal” rumble strips (a.k.a. “mumble strips”).

The life-saving benefits of rumble strips are well-established, but traditional designs produce external noise that residents consider to be a nuisance. The issue has pit safety concerns against quality-of-life concerns in some parts of the state. Researchers are investigating whether sinusoidal rumble strip designs, which are much quieter, are effective enough to combat drowsy or inattentive driving.

The video is not exactly a scientific comparison, but it does give the viewer a good sense of the difference in noise levels produced by the two styles of rumble strips. The results of the actual research project are expected to be available later this year.