Tag Archives: highways

Transportation spending: How does Minnesota compare with other states?

Transportation funding continues to be a contentious issue in Minnesota: Are we spending enough, too little, too much? One way to help answer that question is to compare spending with other states.

“A simple comparison, however, may not accurately reflect the real level of transportation funding across the states,” says Jerry Zhao, an associate professor in the Humphrey School of Public Affairs. “States face different levels of demand and costs due to different geographic, demographic, or labor market conditions.”

To better understand the factors that influence the transportation funding level, Zhao and Professor Wen Wang at Rutgers University developed a cost-adjusted approach to systematically compare highway expenses among states. They found that while Minnesota spends more than average on highways, its spending level actually ranks low in cost-adjusted measures.

“We controlled for the effects of some major cost factors, such as demographics and natural weather conditions, which are outside of the control of state and local officials,” Zhao explains. “We found that natural weather conditions have a significant impact on highway spending—a lower winter temperature is associated with higher highway expenditures.”

The effect of population size isn’t as straightforward: “There is some impact of economy of scale, but only to a certain threshold,” he says. While urban areas have greater complexity, the higher population density is associated with less spending per capita, probably due to spreading the costs across a greater population.

The analysis also found that state and local governments tend to spend less on highways when they are under fiscal stress, and states with a higher gross domestic product (GDP) appeared to spend more on highways per capita. “Essentially, highway investment decisions may be greatly influenced by the economic fluctuations and fiscal stresses faced by a state,” he says.

According to unadjusted 2010 data, Minnesota ranks 8th on highway spending per capita and 18th on its share of statewide highway spending in GDP. “But after adjusting for those factors that are largely out of control by transportation policy, we found that Minnesota’s rankings drop to 37th on highway spending per capita and 41st on the share of highway spending in GDP,” Zhao says. “This suggests that the relatively high level of highway spending in Minnesota is largely driven by the cost factors of demographics and weather conditions.”

“This study confirms what MnDOT has experienced and that transportation financing is more complicated than one would expect,” says Tracy Hatch, MnDOT deputy commissioner. “Not only is Minnesota’s transportation system significantly undercapitalized—there are considerable financial impacts from factors outside of our control.”

The analysis was conducted as part of the U’s Transportation Policy and Economic Competitiveness Program (TPEC). In previous work, TPEC researchers created the Minnesota Transportation Finance Database, which compiles data about Minnesota’s transportation finance and shows the change of transportation spending in Minnesota over time.

MnROAD celebrates 20th anniversary, prepares for next research phase

Researchers from around the world rely on Minnesota’s pavement testing center, MnROAD.

Minnesota alone saves at least $33 million each year, thanks to quantifiable advances made at MnROAD. The annual nation-wide savings is thought to be even larger: $749 million.

Established in 1994, MnROAD partners with the FHWA, industry and dozens of other states and countries to conduct research on two live test tracks in rural Albertville.

No other cold-weather facility offers such an array of pavement types with thousands of electronic sensors recording both environmental changes and dynamic truck testing.

“If not for MnROAD, many of our projects wouldn’t be nearly as successful,” said Highway Research Engineer Larry Wiser of the Federal Highway Administration.

At an Aug. 6 open house, this one-of-a-kind research facility celebrated 20 years of finding ways to make roads last longer, perform better and cost less.

Two separate road segments contain 51 test cells, with different combinations of surface materials, aggregate bases and subgrades, as well as variations in structural design and drainage features.

MnROAD consists of two unique road segments located next to Interstate 94.
MnROAD consists of two unique road segments located next to Interstate 94.
Annual Savings

MnROAD’s initial research on pavement life and performance (from 1994 to 2006) reduced maintenance costs, repairs and motorist delay.

In the second phase of research, MnROAD reconstructed almost 40 test cells for more than 20 different studies. The benefits derived from this work is estimated to be worth nearly nine times what the studies cost – and that’s just the benefit for Minnesota.

“We’re excited for the third phase of research, which will be mainly focused on maintenance and rehabilitation,” said MnROAD Operations Engineer Ben Worel. “We’ve seen the benefits of our past research and expect the same in the future.”

MnROAD’s facility includes:
– A test section of I-94 carrying live traffic
– A low-volume roadway that simulates rural road conditions
– Thousands of sensors that record load response and environmental data.

Chip sealing: not just for local roads anymore (video)

Chip-sealing — spraying an asphalt emulsion over existing pavement and then covering it with fine aggregate — is a cost-effective alternative to resurfacing asphalt pavements. Traditionally, however, it has only been used on rural and low-volume urban roadways.

During a recent visit to MnROAD, we filmed a road crew chip-sealing a test section on I-94 and spoke with MnDOT Research Project Supervisor Tom Wood, who explained why chip sealing can also be an effective treatment for high-volume roadways.

*Note: This story was updated on 08/12/2014 to clarify that the chip sealing shown in the video involves spraying an “asphalt emulsion” rather than “hot liquid asphalt,” as stated in an earlier version of this post.

Rumble Strips vs. Mumble Strips: Noise Comparison (Video)

We recently blogged about a research project to evaluate a new type of rumble strip that produces significantly less external noise than traditional designs. The above video, shot near Thief River Falls, Minnesota, shows a comparison between traditional rumble strip designs and the newer, “sinusoidal” rumble strips (a.k.a. “mumble strips”).

The life-saving benefits of rumble strips are well-established, but traditional designs produce external noise that residents consider to be a nuisance. The issue has pit safety concerns against quality-of-life concerns in some parts of the state. Researchers are investigating whether sinusoidal rumble strip designs, which are much quieter, are effective enough to combat drowsy or inattentive driving.

The video is not exactly a scientific comparison, but it does give the viewer a good sense of the difference in noise levels produced by the two styles of rumble strips. The results of the actual research project are expected to be available later this year.

Software Tool Cuts Time to Analyze Twin Cities Congestion

Newly developed software has drastically reduced the amount of time and effort required by MnDOT’s Regional Transportation Management Center (RTMC) to analyze congestion in the Twin Cities metropolitan area.

Developing MnDOT’s annual Metropolitan Freeway System Congestion Report used to be a manual process that could be applied to only a portion of the large quantity of data generated by in-pavement sensors.

The new Highway Automated Reporting Tool now automatically imports and cleans data to produce a report about the percentage of network miles congested during peak periods as well as three new reports on other performance measures.

The tool will help MnDOT engineers and planners better develop congestion reduction strategies and determine the most cost-effective investments in the network.

From RTMC’s control room, engineers monitor and manage 400 miles of Twin Cities freeway traffic using data from thousands of in-pavement sensors.

“Before HART, it took months to analyze freeway performance using traffic data from only the month of October. Now engineers can quickly analyze data from any time period, significantly improving traffic planning,” said Jesse Larson, Assistant Freeway Operations Engineer for MnDOT’s Metro District Regional Transportation Management Center.

The tool was developed in a MnDOT-funded study led by University of Minnesota researcher John Hourdos.

Note: This article was adapted from the May–June 2014 issue of our Accelerator newsletter. Sign up for your free print or email subscription by clicking here.

Resources

MnDOT looks for solution to noisy highway rumble strips

Rumble strips alert sleepy and inattentive motorists that they are about to veer off the highway or into the opposite lane of traffic. But the grating noise that prevents collisions can also be annoying to nearby residents.

Around Minnesota, more and more counties are facing push-back as they install shoulder rumble strips on roadways in populated areas. This is because county road shoulders are narrow — leading drivers to frequently hit the rumbles.

“There is a strong concern statewide that these noise complaints will raise enough concern that legislation may be passed reducing their use,” said technical liaison Ken Johnson of MnDOT’s Office of Traffic, Safety and Technology.

A European-developed style of rumble strip, called sinusoidal, could provide Minnesota a new means of warning drivers without as much stray highway noise.

Accident reduction

Rumble strips are patterns ground into asphalt that cause a vehicle to vibrate when its tires come close to the centerline or road edge. They help prevent lane departure crashes, which account for more than 50-percent of fatalities on the road system.

The sinusoidal rumble (below) has a sine wave pattern ground into the pavement, while the traditional rumble strip (top photo) doesn’t follow a wave pattern.

Photo courtesy of the Wirtgen Group
Creation of a Sinusoidal rumble strip. Photo courtesy of the Wirtgen Group

MnDOT’s Office of Traffic, Safety and Technology plans to test different designs of the Sinusoidal rumble strips to find the one with the highest level of interior vehicle noise and lowest level of exterior vehicle noise.

The navigability of sinusoidal rumbles by motorcycles and bicycles will also be evaluated. The project was recently funded with a research implementation grant from MnDOT’s Transportation Research Innovation Group.

If sinusoidal rumble strips are found to be effective, the chosen design will be used for centerlines and road shoulders in noise-sensitive areas throughout the state highway system. It is anticipated that counties will also adopt the design.

Unlike counties, most of MnDOT’s recent complaints have been for its centerline rumbles, which are required on all rural, high-speed undivided roads in Minnesota, Johnson said.

MnDOT has considered allowing more exceptions due to residential noise concern; however, doing so could result in more fatal and serious crashes. Sinusoidal rumbles are seen as a possible alternative for these noise-sensitive areas.

The Local Road Research Board is also studying different designs of sinusoidal rumble strips in Polk County.

Funding highway projects with value capture could speed project completion

There’s broad agreement that the U.S. transportation system cannot continue to be funded with existing financing and revenue-generation methods. What’s unclear, however, is how to pay for highway projects in the future. The current transportation funding system emphasizes user fees, but there is growing interest in alternative funding strategies. One promising strategy is value capture, which aims to recover the value of benefits received by property owners and developers as a result of infrastructure improvements.

In recent years, University of Minnesota researchers have helped lead the way in value capture research with a series of reports identifying value capture strategies. In a newly published study, the research team applied their previous work to a real-world scenario, with impressive results.

The new research, sponsored by the Minnesota Department of Transportation, focused on the planned development of Trunk Highway 610 (TH 610) in Maple Grove, Minnesota—a stretch of planned state highway delayed for years by state transportation funding shortages. Researchers set out to discover how the value of the enhanced accessibility provided by the planned improvements could be predicted and captured to help fund the project’s completion.

To accomplish their goal, researchers first defined a study area of about 10 square miles surrounding the unfinished highway segment. Then, they modeled property values based on five factors using parcel-level data. This model was designed to isolate the so-called “highway premium” by controlling for other factors that affect land value including water views, open space, railroads, transit stops, and existing highway exits. Using this model, researchers found significant evidence that the completion of the highway could lead to an over $17 million increase in property value.

Researchers expect these findings to have significant benefits for the TH 610 project and beyond.

Read the full article in the March issue of Catalyst.

Photo courtesy of SRF Consulting Group, Inc.

‘Smart window’ technology opens new possibilities for transportation noise control

Nearly every time a highway or airport expansion is proposed, transportation planners face opposition from residents who fear the increased noise levels in their homes and businesses. Traffic noise is often mitigated with physical noise barriers, but the large, thick walls often draw opposition as well.

A new technology developed by University
 of Minnesota mechanical engineering professor 
Rajesh Rajamani as part of 
a research project funded
 by the National Science
 Foundation could soon
 provide a nearly invisible
 solution for transportation 
noise cancellation—and 
give transportation planners another tool for overcoming project opposition.

Noise enters homes close to airports and highways primarily through windows, and windows can transmit ten times the sound energy as walls can, says Rajamani. With this in mind, researchers set out to reduce the amount of transportation noise transmitted through windows.

To accomplish this goal, researchers created a method of active noise control for windows. Active noise control works by using speakers to generate a sound wave that is a mirror image of the undesirable sound wave. Superimposing an “anti-noise” wave of the same amplitude as the undesirable noise wave results in a reduced decibel level of noise in the environment.

The research team began by designing thin, transparent speaker panels to fit in the empty space between the two panes of a double-pane window. Then, the researchers tested the effectiveness of the new speakers, using them to cancel out undesirable transportation noise from outside the home while preserving the desirable noise from inside the home.

In addition to mitigating traffic noise, this new technology offers other surprising benefits. Researchers have found that the “smart window” speakers can actually be used as home audio speakers without losing any of their noise-control benefits.

Read the full article in the February issue of Catalyst.