Tag Archives: asphalt

Nanotechnology Reduces Cold-Weather Cracking in Asphalt Pavements

Adding graphite nanoplatelets (GNP) to asphalt binders and applying the methodology developed in a new MnDOT study could provide a cost-effective approach to reducing cold-weather cracking and increasing the durability of Minnesota pavements.

“This project gives MnDOT a low-cost way to incorporate the latest nanotechnologies into our asphalt mixtures, reducing cold-weather cracking and increasing the durability of Minnesota pavements,” said Shongtao Dai, Research Operations Engineer, MnDOT Office of Materials and Road Research.

What Was Our Goal?

The objective of this project was to develop a cost-effective method to determine the optimum mix design of GNP-reinforced asphalt binders and mixtures. This method would predict the fracture behavior of these materials using a combination of simple laboratory testing and computer modeling.

What Did We Do?

Researchers developed a method for determining the quantity of GNP to add to an asphalt binder to achieve optimal asphalt mixture performance. The method used a computer model to predict the low-temperature fracture behavior of mixtures based on bending beam rheometer (BBR) tests on fine aggregate mixtures. This test applies a load to the center of a thin, rectangular specimen that has been cooled to a low temperature while its edges rest on two elevated supports, and then measures how the specimen bends over time. The results of this test determine the stiffness of materials and their ability to relax the stresses of contraction.

The BBR test is simpler, less expensive and less labor-intensive than the more accurate semicircular bend (SCB) test, which measures fracture resistance—the way cracks in a material form—by loading a semicircular sample from its apex. However, the SCB test can determine the properties of all the particles within a mixture; the BBR test can only evaluate the mechanical properties of coarse aggregates. To obtain the accuracy of the SCB test without the labor and expense, the computer model developed by researchers in this study uses BBR results as inputs to simulate SCB tests and infer the properties of fine aggregates.

2018-02-p1-image
Although simpler and less expensive than a SCB test, a BBR test only evaluates the properties of a mixture’s coarse aggregates.

What Did We Learn?

Researchers validated their computer model by comparing its results with those of  actual SCB tests. They found that the model was able to predict the results of SCB tests for both conventional and GNP-modified mixtures. By performing only a BBR test on the fine aggregates mixture and inputting the results into the computer model, researchers obtained a reasonable prediction of the fracture response of the final asphalt mixtures.

In turn, the model showed that using GNP in asphalt binders can significantly improve the strength and fracture resistance of a mixture compared to mixtures with unmodified asphalt binders. The model can be used as a design tool to determine what percentage of GNP is needed to achieve the necessary tensile strength for a target value of fracture energy.

What’s Next?

Using GNP in asphalt binders, in combination with the methodology developed in this project, could potentially provide MnDOT with a cost-effective approach to improving the cold-weather performance of Minnesota pavements, preventing cracking and increasing pavement durability. MnDOT will continue to evaluate the use of GNP in its asphalt mixes.

This post pertains to Report 2018-02, “A Mechanistic Design Approach for Graphite Nanoplatelet (GNP) Reinforced Asphalt Mixtures for Low-Temperature Applications.” Further GNP research is underway. Find related projects at MnDOT.gov/research.

New Procedures Offer Guidance for Using Bonded Whitetopping on Asphalt Pavements

Researchers developed procedures for selecting asphalt pavements for thin whitetopping based on site examination and lab testing. Test results do not offer definitive indications of how overlaid asphalts will perform, but procedures offer recommendations on pre-overlay pavement treatment, testing protocols and design considerations for bonded concrete overlay of asphalt.

“This research established a procedure for testing pavement cores. However, more performance data on whitetopping is needed to correlate pavement performance and asphalt properties,” said Tim Andersen, Pavement Design Engineer, MnDOT Office of Materials and Road Research.

“These procedures address collecting field data and testing pavement core samples in the lab. They also provide useful guidance for pavement repair and design considerations for overlays,” said Dale Harrington, Principal Engineer, Snyder and Associates, Inc.

A badly rutted pavement.
Rutted and otherwise damaged asphalt pavement is a candidate for a bonded concrete overlay that can mitigate damage under the right site conditions.

What Was the Need?

Many counties throughout Minnesota have used bonded concrete overlays to rehabilitate asphalt pavement. Though not widely used by MnDOT, a bonded concrete overlay, or whitetopping, normally involves milling a few inches of asphalt off the damaged surface and placing 4 to 6 inches of concrete over the asphalt pavement. A well-bonded overlay can add 20 years to a pavement’s service life.

Bonded whitetopping performance has not been care-fully tracked, and correlation of its performance with the underlying pavement condition is not well understood. Be-fore MnDOT can expand its use of bonded whitetopping, materials engineers wanted to better understand what asphalt pavement conditions are best suited to this type of overlay, how asphalt behavior influences the concrete top layer and what underlying pavement characteristics affect the expected lifetime and performance of bonded white-topping.

What Was Our Goal?

This project sought to develop an integrated selection procedure for analyzing existing, distressed asphalt pavement to identify good candidates for bonded whitetopping and establish design considerations for a site-specific, effective concrete overlay. By testing pavement core samples in the lab, investigators wanted to identify asphalt pavement properties that correlate with distresses in concrete overlays that are 6 inches or less. They also sought specific recommendations for managing trans-verse cracking in asphalt to avoid reflective cracking into concrete overlays.

What Did We Do?

Researchers began with a literature review of approaches to selecting pavements for bonded whitetopping. The results of this review were used to develop testing procedures to identify the volumetric properties of existing asphalt pavements. Researchers applied these procedures to 22 pavement cores from six concrete overlay sites in Iowa, Michigan, Minnesota and Missouri. Selected projects entailed 4-inch to 6-inch overlays in fair to good condition that were built from 1994 through 2009. Data about mix design, asphalt condition, pavement thickness, overlay thickness, site conditions and other details were available for each site.

The research team compared roadway data with falling weight deflectometer measurements from pavement cores to evaluate field performance and design recommendations suggested by the selection procedure. To refine the procedures, investigators evaluated volumetric asphalt characteristics for their potential influence on premature overlay cracking due to stripping, slab migration and reflective cracking. Finally, the team developed a detailed selection process that includes steps to identify and test asphalt pavements with potential for bonded whitetopping, repair asphalt before overlays and establish design considerations for overlays based on the test results from the selected asphalt pavement.

What Did We Learn?

The selection procedure, which is based on recommended practices from the National Concrete Pavement Technology Center, has six steps:

  • Perform a desk review of available site data, including design, repair and environmental conditions.
  • Obtain pavement core samples.
  • Conduct site visits to examine existing conditions.
  • Obtain additional core samples for testing, when necessary.
  • Prepare preliminary cost and materials estimates, if practical.
  • Provide design recommendations.

Investigators tested pavement cores for air voids, density, stiffness, fatigue, aging, strip-ping potential and other distress parameters. Results were inconclusive in terms of identifying asphalt properties that lead to specific bonded concrete overlay failures or to long-term performance of bonded whitetopping projects. The pavement cores showed wide variation in material properties, but few of these distresses. Researchers framed the recommendations for testing volumetric properties in the format of MnDOT’s Pavement Design Manual, giving the agency an easily adoptable core testing protocol.

The selection procedures include information about the impact of transverse cracking, rutting, longitudinal cracking and other distresses on concrete overlays, and provide recommendations for treating various distresses before whitetopping. Design considerations for whitetopping are also provided based on site conditions and the results of core, ground penetrating radar and falling weight deflectometer testing.

What’s Next?

Tested overlay sections should be evaluated over time to determine if life expectancy is met or if asphalt stripping, slab migration or reflective cracking has decreased overlay life. Because volumetric tests failed to provide conclusive relationships between asphalt properties and overlay distress, further research is needed to identify mechanistic or field tests that could correlate asphalt properties with concrete overlay performance. Once this additional research is completed, the selection procedures identified could be refined and placed in the design guide. A life-cycle cost analysis of overlays would also be useful for decision-makers considering bonded concrete overlays of asphalt.


This Technical Summary pertains to Report 2017-24, “MnDOT Thin Whitetopping Selection Procedures,” published June 2017. 

Research Confirms Low-Binder Asphalt Pavement Mixtures Prone to Cracking

Disk-shaped compact tension test
The disk-shaped compact tension test determines fracture energy of pavement samples, a strong predictor of cracking performance.

Research showed that lower asphalt binder mixtures are susceptible to premature cracking. The current use of coarse-graded mix designs should be adjusted to narrow the gradation difference between larger and smaller aggregates in the mixes. While the research suggests such mixes should be used sparingly in Minnesota, it did not provide definitive data suggesting the practice should be stopped altogether. The practice may continue on a limited basis.

What Was the Need?

Introduced in 1993, Superpave has successfully helped transportation agencies in northern regions design asphalt pavements that are less susceptible to thermal cracking. When tested, Superpave-compliant designs were found to resist both rutting and thermal cracking.

Gradation-based design approaches have also allowed for the use of coarse-graded, low asphalt binder mixtures. These mix designs establish a maximum aggregate size and reduce the range of usable gradations. Such coarse-graded designs meet MnDOT specifications because the maximum aggregate size falls within the acceptable gradation range. However, the reduced fine aggregate content made possible by the use of coarse aggregates leads to a mix that, while still within specifications, offers less surface area to be coated by the asphalt binder and can encourage unwelcome permeability in the field. To win low-bid competitions, contractors have embraced these low-binder, coarse-graded designs to reduce binder and aggregate costs.

Transportation engineers noticed that these pavements seemed to “gray out” or lose their dark color more quickly than previous asphalt designs. These pavements also seemed to grow somewhat more brittle and were less able to rebound from loading. Such asphalts are thought to be prone to quicker failure than mixes with finer aggregate and more binder. Road designers typically attribute thermal cracking and potholing in low-binder asphalt to the increased permeability that leads to water incursion and freeze-thaw damage.

What Was Our Goal?

The goal of this project was to determine how well low-binder asphalt pavements per-form and whether current designs make sense in terms of cost–benefit and durability. Researchers would identify any relationship between reduced bitumen use and potential for cracking, and would suggest changes to specifications for coarse-graded asphalt pavement mixtures to prevent such cracking issues.

What Did We Do?

Researchers worked with MnDOT to identify 10 pavement locations in Minnesota that used 13 coarse-graded, low-binder asphalt mix designs. Investigators extracted data on cracking, roughness and other factors for these sites from MnDOT’s pavement management system. The research team then visited the sites and inspected the pavements.

Researchers developed a coring plan, and field samples were cored for volumetric analysis to determine the binder, aggregate, air void level and other properties of each mixture. They also tested permeability and dynamic modulus, and conducted fracture energy testing to determine cracking resistance.

Investigators used performance modeling to analyze the test results of pavement proper-ties and project pavement durability. Then they compared the projected performance to actual field performance. From this assessment, they drew recommendations for modifying specifications for MnDOT low-binder, coarse-graded asphalt mixtures.

What Did We Learn?

This study suggests MnDOT should reduce its use of coarse-graded asphalt mixtures, but the findings did not provide sufficient data to justify prohibiting the use of coarse- graded, low-binder asphalt designs.

Low-binder mixtures were prone to thermal and transverse cracking. Their high permeability left them vulnerable to premature moisture and freeze-thaw damage. Field and laboratory testing and modeling demonstrated that coarser mixtures produce excessive cracking in a short period of time. Thin overlays of 3 inches or less crack more quickly than thick overlays of 4 to 6 inches. Mechanistic-empirical simulations showed that low-binder asphalt mixtures were significantly inferior to higher-binder mixtures in terms of thermal cracking.

Most of the high-cracking mixtures showed low fracture energy in testing, suggesting the value of fracture energy testing and modeling. Disk-shaped compact tension testing showed that higher permeability mixtures correlate reasonably well with lower fracture energy. Eight of the 13 mixtures were more permeable than recommended, and six significantly so. Typical volumetric properties poorly predicted cracking.

To better project pavement performance, researchers recommend that MnDOT maintain volumetric testing-based specifications, but add performance testing-based specifications and testing designs for fracture energy, fracture resistance, modulus and other parameters. For Superpave designs, investigators suggest using a narrower aggregate gradation range, reducing the gradation gap between minimum and maximum aggregates in mixes.

What’s Next?

Although the research validates MnDOT engineers’ anecdotal concerns, the pavements evaluated were mostly overlays, which are known to be susceptible to transverse cracking because of flaws in underlying pavement layers. MnDOT may weigh the results and adjust specifications, but would likely require further study of coarse-graded mixture performance before ruling out its use or identifying situations in which coarse-graded mixtures may be the best option. Additional research could consider the use of nonuniform lift designs for asphalt pavements, varying mixes for each lift in the structure rather than using a single, uniform mix for every layer in the full depth of the pavement.


This post pertains to Report 2017-27, “Impact of Low Asphalt Binder for Coarse HMA Mixes,” published June 2017. 

Winter seminars highlight research on work-zone safety, culvert design, and more

Join us in person on the U of M campus or tune in online to the CTS winter research seminars. The seminars will highlight a sampling of the latest transportation research at the U of M.

Here’s this year’s seminar schedule:

Each seminar will be held in Room 50B at the Humphrey School of Public Affairs. Or, if you can’t make it in person, you can watch the seminars live online or view recordings posted after the events. For details about the live broadcasts, see the individual seminar web pages.

There’s no cost to attend, and each seminar qualifies for one Professional Development Hour.

Hope to see you there!

MnROAD celebrates 20th anniversary, prepares for next research phase

Researchers from around the world rely on Minnesota’s pavement testing center, MnROAD.

Minnesota alone saves at least $33 million each year, thanks to quantifiable advances made at MnROAD. The annual nation-wide savings is thought to be even larger: $749 million.

Established in 1994, MnROAD partners with the FHWA, industry and dozens of other states and countries to conduct research on two live test tracks in rural Albertville.

No other cold-weather facility offers such an array of pavement types with thousands of electronic sensors recording both environmental changes and dynamic truck testing.

“If not for MnROAD, many of our projects wouldn’t be nearly as successful,” said Highway Research Engineer Larry Wiser of the Federal Highway Administration.

At an Aug. 6 open house, this one-of-a-kind research facility celebrated 20 years of finding ways to make roads last longer, perform better and cost less.

Two separate road segments contain 51 test cells, with different combinations of surface materials, aggregate bases and subgrades, as well as variations in structural design and drainage features.

MnROAD consists of two unique road segments located next to Interstate 94.
MnROAD consists of two unique road segments located next to Interstate 94.
Annual Savings

MnROAD’s initial research on pavement life and performance (from 1994 to 2006) reduced maintenance costs, repairs and motorist delay.

In the second phase of research, MnROAD reconstructed almost 40 test cells for more than 20 different studies. The benefits derived from this work is estimated to be worth nearly nine times what the studies cost – and that’s just the benefit for Minnesota.

“We’re excited for the third phase of research, which will be mainly focused on maintenance and rehabilitation,” said MnROAD Operations Engineer Ben Worel. “We’ve seen the benefits of our past research and expect the same in the future.”

MnROAD’s facility includes:
– A test section of I-94 carrying live traffic
– A low-volume roadway that simulates rural road conditions
– Thousands of sensors that record load response and environmental data.

Chip sealing: not just for local roads anymore (video)

Chip-sealing — spraying an asphalt emulsion over existing pavement and then covering it with fine aggregate — is a cost-effective alternative to resurfacing asphalt pavements. Traditionally, however, it has only been used on rural and low-volume urban roadways.

During a recent visit to MnROAD, we filmed a road crew chip-sealing a test section on I-94 and spoke with MnDOT Research Project Supervisor Tom Wood, who explained why chip sealing can also be an effective treatment for high-volume roadways.

*Note: This story was updated on 08/12/2014 to clarify that the chip sealing shown in the video involves spraying an “asphalt emulsion” rather than “hot liquid asphalt,” as stated in an earlier version of this post.

New test could help asphalt pavements survive winter intact

If there was ever a winter that demonstrated what cold weather can do to asphalt pavements, last one was it. But future winters may wreak less havoc on Minnesota roadways, thanks to a new asphalt mixture test in the final stages of evaluation by MnDOT’s Office of Materials and Road Research (OMRR).

Developed through a decade-long multi-state research project, the Disc-shaped Compact Tension (DCT) test evaluates the low-temperature performance of asphalt mixes. (See a video about the project that helped develop the DCT test below.)

For the first time, engineers will be able to predict how well a contractor’s proposed asphalt mix will hold up under harsh Minnesota winters.

“Performance testing is assuring that we’re getting what we’re paying for,” explained MnDOT Research Project Engineer Luke Johanneck.

Low-temperature cracking is the most prevalent form of distress found in asphalt pavements in cold climates. As the temperature drops, the pavement tries to shrink, creating cracks that allow water to seep in and eventually lead to pavement deterioration.

Until now, engineers have typically evaluated the individual components (such as amount of crushed aggregate and asphalt binder grade) and volumetric properties (such as air voids and asphalt content) of an asphalt mix, not how the final product performs in low temperature.

“It’s like baking a cake,” explained MnDOT Bituminous Engineer John Garrity. “Our current system says put in a half-cup of oil, two eggs and cake mix. Rather than just looking just at those individual components, taste the cake to see how good it is.”

Created by researchers at the University of Illinois, the DCT test applies tension to an asphalt mixture sample to determine its thermal fracture resistance. The test was determined to be the best of several methods looked at in another research study, conducted by the University of Minnesota with assistance from neighboring state universities.

The Disc-Shaped Compact Tension Test measures the fracture energy of asphalt  mixture lab or field specimens, which can be used in performance‐type specifications to control various  forms of cracking.
The test measures the fracture energy of asphalt mixture lab or field specimens, which can be used in performance specifications to control various forms of cracking.

The Office of Materials and Road Research is conducting pilot tests to become more familiar with the DCT test and to educate road contractors, who may eventually be required to use the test in Minnesota.

“This is very new to a lot of people that have been in the business for a long time,” Johanneck said.

Last summer, OMRR asked five contractors to submit asphalt mixes for testing. If a mix didn’t pass, the contractor was given suggestions for how to modify their recipe to better resist thermal cracking. This summer, OMRR plans to collect asphalt mixes from around the state to see how they measure up against a set of performance targets that were developed in the pooled fund study.

“We envision this at some point being part of our standard bid specifications,” Garrity said.

Those with a professional interest in the subject might be interested in a new video from MnDOT Research Services & Library (below) that demonstrates how to do the sample preparation for the DCT test.

Research Studies

Current DCT Test Implementation Project (2014) Pooling Our Research: Designing Asphalt Pavements That Resist Cracking at Low Temperatures (March 2013 Technical Summary) Synthesis of Performance Testing of Asphalt Concrete (September 2011) Investigation of Low Temperature Cracking in Asphalt Pavements National Pooled Fund Study 776 (2007 report)

Related Videos

Frost Damage in Pavement: Causes and Cures (full-length) Frost Damage in Pavement: Causes and Cures (short version)

Patching pavement with microwaves and magnetite

On Wednesday, I had a chance to watch a demonstration of a uniquely Minnesotan pavement patching technology that combines an industrial-strength microwave with a special asphalt mix. What makes it “uniquely Minnesotan?” In addition to having been developed by University of Minnesota researchers and a Monticello-based company (and with some funding from MnDOT), this innovative method involves a special asphalt mix using magnetite, a mineral that abounds on Minnesota’s Iron Range.

It also addresses a very Minnesotan transportation problem: winter pavement repair. In the video above, Kirk Kjellberg of Microwave Utilities, Inc., highlights some of the benefits of using the 50,000-watt microwave to heat the pavement during patching. In addition to creating a longer-lasting patch, the microwave is considerably faster than many alternative techniques. The technology is still relatively new, but its supporters claim it allows for pavement repairs in the middle of winter that are as strong and durable as the ones road crews do in the summer.

The demonstration, which was organized for members of the Local Road Research Board, took place at MnDOT’s District 3 training facility in St. Cloud.

See also:

‘Three Ways to Cook a Pothole’

In April, we posted about an innovative pothole-filling technology being developed by the Minnesota Department of Transportation and the University of Minnesota, Duluth. The technique involves zapping pothole patches and the surrounding pavement with a special truck-mounted, 50,000-watt microwave. Researchers have found that heating the base and the patch material at the same time creates a stronger, longer-lasting bond that provides for a more permanent pothole fix.

Last week, the MnDOT/UMD microwave technology found its way into a new MnDOT video (above) that also explores two other experimental pothole-patching methods. One involves using a large “electric oven”-type heating element instead of a microwave. The other utilizes a new exothermic (i.e. heat-generating) asphalt mixture containing taconite from northern Minnesota mines. The video compares the potential benefits of all three of the new technologies, which the department hopes will someday lead to “more pothole-patching power for the taxpayer dollar.”

See also:

Research partnerships create better pavements

As is painfully evident this time of year, Minnesota’s weather is highly destructive to our asphalt roadways.  One of the biggest challenges for transportation practitioners in cold-climate states like ours is low-temperature cracking in asphalt pavements. The distress caused by  our extreme weather variations and constant freeze-thaw cycles wreaks havoc on our asphalt streets and highways, causing decreased ride quality, increased maintenance costs and shorter pavement lifespans.

On April 17, the Center for Transportation Studies presented its 2013 Research Partnership Award to the team members of a multi-state, Minnesota-led study designed to combat the problem. The project, Investigation of Low Temperature Cracking in Asphalt Pavements, Phase II,” was a national pooled-fund study involving six state DOTs, four universities, the Minnesota Local Road Research Board and the Federal Highway Administration. It resulted in a new set of tools — test methods, material specifications and predictive models — that will be used to build longer-lasting pavements.

The project is a prime example of the value and benefits of cooperative research. Each organization brought its own unique strengths and expertise to bear on the problem. The University of Minnesota, led by Professor Mihai Marasteanu, brought its strength in lab testing of binders and mixtures, for example; other universities leveraged their respective expertise in data analysis, statistics and modeling capabilities. MnDOT, as the lead state agency, controlled the finances and kept the research on track, guiding the process through technical advisory panels. MnDOT’s materials laboratory and its unique MnROAD pavement research facility also played a key role in the study.

The above video provides an excellent overview of the project and includes commentary from key MnDOT and University of Minnesota team members. MnDOT is already moving to implement the results. It plans to use the new test procedure on several road construction projects this year. Iowa and Connecticut are among the other states reportedly planning implementation projects.

See also:

2013 Research Partnership Award winners

From left: University of Minnesota Professor Mihai Marasteanu, the project’s principal investigator; MnDOT State Aid Director Julie Skallman; MnROAD Operations Engineer Ben Worel; and CTS Associate Director for Development and Finance Dawn Spanhake, who presented the award. (Photo by Cadie Adhikary, Center for Transportation Studies)