Category Archives: Pedestrian

Ridership and Pedestrian Impacts of Transitways: A Case Study of Hiawatha Light-Rail Transit in Minneapolis

Following up on Nick’s post last week about transportation practitioners’ preferences for short research summaries, the Center for Transportation Studies recently published a two-page research brief highlighting results from a University of Minnesota study that explores the ridership and pedestrian impacts of the Hiawatha Line in the Minneapolis–St. Paul metropolitan region. The study compares the travel behavior of residents in the LRT corridor to those in similar corridors without LRT but with comparable bus service. It investigates the reasons why residents choose to live in the LRT corridor, the associations between transit use and residency in the LRT corridor, and the effects of LRT and the built environment on pedestrian travel.

Findings

mapp

The findings include:
  • Residents who lived in the Hiawatha Corridor when the light-rail transit (LRT) line opened increased their transit use substantially—a clear ridership bonus from LRT.
  • Residents who moved into the corridor after the LRT line opened use transit as often as new residents in similar urban neighborhoods without LRT.
  • When looking for a place to live, good transit service and job accessibility are important factors for both urban and suburban residents—ranked behind only housing affordability and neighborhood safety.
  • Residents choose to live near Hiawatha LRT stations because of their strong preference for transit access and quality.

Recommendations

To encourage transit use among station-area residents, the researchers recommend the following:

  1. Consider development potential when planning LRT routes and design a vibrant place rather than a traffic node to ensure a mix of activities and users.
  2. Create pedestrian-friendly connections between residential neighborhoods and rail stations.

Related links

About the Research
The research was conducted by Assistant Professor Xinyu (Jason) Cao and research assistant Jessica Schoner of the Humphrey School of Public Affairs at the University of Minnesota and funded by the Transitway Impacts Research Program (TIRP).

Free webinar July 9 on best practices for bicycle trail crossings

Intersections between trails and roadways can be dangerous places for bicyclists and pedestrians. Next week, MnDOT Research Services is offering a free webinar on a forthcoming manual designed to help make trail crossings safer.

On Tuesday, July 9, from 1:00 p.m. to 2:30 p.m. (CDT), University of Wisconsin—Madison Professor David Noyce will be conducting a workshop on his forthcoming handbook, “Decision Tree for Identifying Alternative Trail Crossing Treatments.” The project, funded by MnDOT and the Local Road Research Board, aims to identify current engineering state-of-the-practice for trail crossings and provide guidance as to appropriate crossing designs and vehicular and bicycle right-of-way hierarchies.

You can click on the link below at the specified date and time to watch the webinar. No registration is required.

http://mndot.adobeconnect.com/trailcrossing/

CTS Research Conference videos and presentations now available

If you weren’t able to attend the CTS Research Conference, or, if you simply want to check out presentations from other sessions, the videos of the keynote and luncheon speeches, as well as PPTs from most of the concurrent sessions, are now available on the CTS website. You won’t want to miss Minnesota Department of Health Commissioner Ehlinger’s tuneful take on the links between health and transportation and Elizabeth Deakin’s view of new ways to get around.

Bicycle and pedestrian counting initiative monitors nonmotorized traffic in Minnesota

In a continuing effort to better understand nonmotorized traffic patterns in Minnesota, researchers from the Humphrey School of Public Affairs have partnered with the Minnesota Department of Transportation (MnDOT) to develop guidelines and analyze information collected in bicycle and pedestrian traffic counts throughout the state.Image

The research team, led by Professor Greg Lindsey, aims to develop consistent methods for monitoring and assessing bicycle and pedestrian traffic that can be used in both permanent, automated traffic counts and short-term manual counts. The goal is to provide evidence for decision making that Minnesota cities have historically lacked, Lindsey says. “We’ll have practical, useful information about bike and pedestrian traffic that can help local jurisdictions as they plan and invest in infrastructure,” he says.

As part of the 18-month project, the research team created a set of tools and methods for short-duration manual counts of nonmotorized traffic, held training workshops, and organized a statewide counting effort involving 43 Minnesota municipalities last fall. The overall response was positive, Lindsey says, and some communities are already using their collected data to submit grant proposals for projects related to nonmotorized traffic.

In addition, Lindsey and his team have examined traffic information from six permanent counters on Minneapolis trails. The continuous counts collected at these locations help the researchers understand traffic patterns and the factors that affect them, Lindsey says. For example, the team found that bike and pedestrian traffic vary by trail type, time of day, day of week, and season.

“Once we know the patterns at permanent sites, we can develop factors that help us expand short-term counts from other locations with similar conditions,” Lindsey says. The factors could be used to estimate anything from total daily traffic to annual traffic, as long as the short-term count location is similar to an existing model.

Based on the overall results of the study, the research team developed recommendations for MnDOT. These include continuing to coordinate statewide short-term field counts, demonstrating the feasibility of automated counting technologies, and beginning to integrate nonmotorized and vehicular traffic databases.

Based on these recommendations, MnDOT is moving forward with a new project that will collect more short- and long-duration counts throughout Minnesota, says Lisa Austin, ABC Ramps coordinator at MnDOT. The next phase of work aims to collect counts for pedestrians on sidewalks, bicyclists on shoulders and in bike lanes, and pedestrians and bicyclists on multiuse trails. MnDOT plans to install more permanent, automated counters in suburban and midsize cities and to conduct additional manual counts in smaller cities around the state, Austin says.

“We’re really excited that this bike and pedestrian counting project is moving into wider implementation,” Austin says. “This next phase will help us see which automated counting technologies work well and make recommendations for moving forward on a broader scale.”

Reprinted from the CTS Catalyst, May 2013.

U of M transportation research highlights video

U of M transportation research highlights during 2012-2013 include a smartphone app for visually impaired pedestrians, pedestrian and bicyclist safety in roundabouts, methods for counting bike and pedestrian traffic on trails, and a filter that takes phosphorous out of storm water.