Tag Archives: pavement distress

New Project: Guide for Converting Severely Distressed Paved Roads to Unpaved Roads

Local agencies are increasingly looking at converting low-trafficked paved roads to gravel at the end of their life span to make budgets stretch. However, agencies have few resources to guide them in this process.

The Minnesota Local Road Research Board recently approved funding for a guidebook on effective practices for converting severely distressed paved roads to unpaved roads. The document will help engineers select roads for conversion, safely conduct conversions and communicate the rationale to the public. No such published document currently exists.

Montana State University researchers has been hired to develop the guidebook based on needs the research team previously identified in the National Cooperative Highway Research Program’s Synthesis 485, “Converting Paved Roads to Unpaved. The guidebook, anticipated to be published in late 2019, will include flowcharts that guide practitioners through decision-making processes. A companion webinar is also planned.

The guidebook will be divided into chapters, which will cover:

  • Methods to determine if a road is a candidate for conversion and determine the existing road materials and condition.
  • Methods to convert a road from paved to unpaved.
  • Methods to assess the life-cycles cost of construction and maintenance of the unpaved road.
  • Tools to effectively inform and communicate with the public
  • Safety implications of converting a severely distressed paved road to an unpaved road.

Background
While low- volume roads are typically identified as having an annual average daily traffic (AADT) of less than 400, roads that are appropriate candidates for conversion will typically have an AADT of less than 150.

These roads are often used by agricultural and extraction industries or to access homes and recreational areas. The type of road users, traffic patterns and vehicle types are all factors that need to be considered in the decision to unpave a road. Other factors include road condition, safety, agency maintenance and maintenance capabilities, as well as a life-cycle cost comparison of maintenance options (continued maintenance of the deteriorating road, rehabilitation of the paved road or conversion to an unpaved surface).

According to the research team, very limited information is available about converted roads, and what information is available often comes in the form of newspaper articles and anecdotal accounts of road conversions.

The document will serve as a formal and peer-reviewed information source. The use of the guide and acceptance of the practice of converting from paved to unpaved surfaces (unpaving) where warranted will provide a case for the acceptance of road conversions as another low-volume road management strategy.

Watch for new developments on this project.  Other Minnesota research can be found at lrrb.org and MnDOT.gov/research

 

Thicker may not equal stronger when building concrete roadways

Transportation agencies have long placed high importance on the thickness of their concrete roadways, making it a major focus of control and inspection during construction. While it is commonly believed thicker concrete pavements last longer, there is little data to support this claim.

“One big reason for the lack of data on the relationship between concrete pavement thickness and performance is the destructive nature of these measurements,” says Lev Khazanovich, a former professor in the University of Minnesota’s Department of Civil, Environmental, and Geo- Engineering. “Concrete thickness is typically assessed by coring—a destructive, expensive, and time-consuming test that only offers widely spaced measurements of thickness.”

In a MnDOT-funded study, U of M researchers set out to fill this knowledge void by leveraging recent advances in the nondestructive testing of pavements that allow for large-scale, rapid collection of reliable measurements for pavement thickness and strength. They conducted four evaluations on three roadways in Minnesota using ultrasonic technology to collect more than 8,000 measurements in a dense survey pattern along with a continuous survey of observable distress.

“We found that both pavement thickness and stress measurements are highly variable, with a half-inch of variation in thickness about every 10 feet,” Khazanovich says. “Interestingly, three of the four surveys averaged less than design thickness, which is contrary to typical accounts of contractors building slightly thicker slabs in order to avoid compensation deductions.”

Data analysis showed that exceeding design thickness did not seem to increase or decrease pavement performance. However, a measurement of pavement strength and quality known as “shear wave velocity” did produce valuable findings. “A drop in the shear wave velocity strength measurement corresponded to an increase in observable pavement distresses such as cracking and crumbling,” Khazanovich explains. “This was especially apparent when we were able to easily identify locations of construction changes, where significant changes in shear wave velocity matched up with observable distress.”

The results of this study illustrate the importance of material quality control and uniformity during construction, since alterations in pavement strength and quality may significantly influence pavement performance. In addition, researchers say that despite inconclusive thickness results, it is still important that pavement has significant thickness to carry its intended traffic load over its service life. Finally, the study demonstrates that new methods of ultrasonic shear wave velocity testing are useful for identifying changes in construction and design that could lead to higher rates of pavement distress.

Why is all the colored concrete deteriorating so fast?

There’s nothing like colored concrete to make a crosswalk, sidewalk or breezeway look snazzy.

But the extra touch that many cities are putting into their downtown streetscapes may not be so pretty in just a few short years.

Early cracking has prompted the city of Vadnais Heights to tear up its colored concrete, and the city of Centerville — which installed colored concrete only six years ago — plans to follow suit, said MnDOT’s Senior Road Research Engineer Tom Burnham.

Both cities participated in a recent study, sponsored by the Local Road Research Board and conducted by MnDOT, to determine what is causing the early deterioration.

Across Minnesota, many of the estimated 45 colored concrete projects have experienced early deterioration, particularly microcracking near contraction joints. While this type of distress also occurs with regular concrete, it appears to be accelerated in the colored concrete projects, within five years in some instances.

Although the newly released study identifies likely causes for the failing colored concrete, further research is needed to evaluate proposed solutions.

Findings

Researchers determined that the colored concrete mixtures have likely been too porous for Minnesota winters, allowing deicing chemicals to leach in and wreak havoc. Although not quite as problematic for sidewalks and medians — which aren’t salted as heavily — it is especially bad for colored crosswalks.

A denser concrete mixture (one formed with less water) is recommended; however, constructing the concrete panels this way will require extra steps.

“There are chemicals that can be added to the mixture to artificially lower that water-to-concrete ratio,” Burnham said. “This will allow a  denser mixture to be more easily placed.”

The city of Centerville plans to tear up its colored concrete. This photo shows early joint deterioration.
The city of Centerville plans to tear up its colored concrete. This photo shows early joint deterioration.
Color in vogue

Although there was a spate of colored concrete construction in Ramsey County in the late 1990s, it has only come into fashion in the rest of the state within the last five to six years, according to Burnham.

“You go to almost any community and they’re installing it — on their sidewalk and medians and also crosswalks,” said Burnham, who coordinated the research study.

Because of the added expense, cities may be very disappointed in the results.

The city of Stillwater, which installed a colored concrete panel crosswalk on its main street just two years ago (see top photo), is already experiencing cracking and deterioration in several panels.

Possible remedies

Although reducing the porosity of the colored concrete mixture should help,  it won’t solve everything.

Another issue is the curing. The typical white curing product can’t be applied like it is with standard concrete, so curing the colored panels is more challenging, Burnham explained.

There are possible remedies, however, to assist with the curing, such as wet burlap or curing blankets.

Adding complexity to the issue are the new deicing chemicals on the market, which are also impacting regular road materials.

Several test samples showed evidence of chemical attack of the cement paste and fine aggregates, as well as an alkali-silica reaction, which can cause cracking or spalling and isn’t normally seen in regular concrete.

“Is there anything unique with the coloring that would accelerate the observed chemical reactions? We didn’t feel we had enough samples and knowledge at this point to conclusively say,” Burnham said.

Different construction techniques could go a long way toward increasing the livelihood of colored concrete; however, it could take several years of observation to determine if other methods work.

MnROAD is considering adding colored concrete panels to its facility for testing.

Until more questions are answered, MnDOT researchers are recommending repair techniques and alternative streetscaping ideas to cities, such concrete stains, pavers or colored high friction surface treatments.

In addition to sharing the findings with cities and counties, Burnham wants to educate contractors.

“We hope this research is a wake-up call for the colored concrete industry too because we don’t want the industry to die in Minnesota,” he said. “If it can work, we want cities and counties to be able to use it.”

*Editor’s Note: This story was updated 09/04/2014 to specify that this research project was funded entirely by the Local Road Research Board, and that MnDOT conducted the research.

Related Resources
  • Investigation and Assessment of Colored Concrete Pavement — Final Report (PDF, 20 MB, 368 pages); Technical Summary (forthcoming)