New guidelines developed for counting bike, pedestrian traffic

Image
Manual field counts require more labor than automatic technologies, but they can collect deeper data about demographics and helmet use. Both forms of monitoring are necessary to give a complete picture of bicycle and pedestrian traffic in the state.

To prepare for a multimodal future, state agencies must be able to plan and engineer a transportation system for all modes of transportation, including bicycle and pedestrian traffic.

The Minnesota Bicycle and Pedestrian Counting Initiative was launched to develop consistent methods for monitoring non-motorized traffic across the state. Researchers developed guidelines for manual counts using state and national examples, and they also created methods for extrapolating annual traffic volumes from short-duration automated counts, for integration into MnDOT’s vehicular count database program.

The guidance developed for manual counts includes forms, training materials, public information for passers-by, links to smartphone applications that provide counting locations and spreadsheets for reporting results.

MnDOT hosted six workshops and a webinar to introduce local officials to the initiative and recruit participants for pilot field counts. Researchers then analyzed how these field counts could be used with existing automated counts to extrapolate daily or annual data.

MnDOT has installed some of the very first automated counting equipment on a state road — Central Avenue NE in Minneapolis (on the bike lane) and Highway 13 in Eagan (on a shoulder). As of 2012, six agencies in Minnesota counted non-motorized traffic (annual reports are available from the city of Minneapolis and Transit for Livable Communities), and even though comprehensive data is not yet available, Minnesota is a leader in this type of monitoring with more than 1,000 manual count locations and 32 automatic count sites.

Because of Minnesota’s experience, researchers collaborated with the National Cooperative Highway Research Program’s national Methodologies and Technologies for Collecting Pedestrian and Bicycle Volume Data research project, due for release in 2014, and contributed to the Federal Highway Administration’s effort to update its Traffic Monitoring Guide to include a chapter on non-motorized traffic.

Learn more:

Uncovering manufacturers’ perspectives on the transportation system

It’s no secret that manufacturing plays a key role in driving economic growth, or that transportation is essential for the success of any manufacturing operation.

While the relationships among manufacturing, transportation, and economic growth have been studied on a large scale, there is often little dialogue between transportation organizations and the manufacturers themselves. A recently completed pilot study conducted jointly by the Minnesota Department of Transportation (MnDOT), the University of Minnesota Humphrey School of Public Affairs, and University of Minnesota Extension aims to address this communication gap.

The pilot project focused on 12 counties in southwest Minnesota, where more than 172 regional businesses were contacted for participation and 75 in-person interviews were completed with manufacturers, shippers, and carriers. During the interviews, participants were encouraged to focus their comments on high-value, low-cost improvements that MnDOT can address in the short term without over-promising projects that currently cannot be funded.

Participants identified the need for smooth pavements and wide shoulders, the value of advance warning lights at intersections with traffic signals, the importance of highway safety, and the challenges of maneuvering oversized vehicles through roundabouts, among others.

The research team is compiling the pilot study’s findings into a final report. In the meantime, MnDOT is working to address a number of the challenges and suggestions uncovered through the pilot program.

Read the full article in the December issue of Catalyst.

New technology aimed at making rural intersections safer

This video above showcases a new kind of intersection conflict warning system being developed for use primarily by local agencies at rural, two-way stop intersections. Called the ALERT System, it uses a simple but ingenious combination of radar, wireless communication and flashing LEDs to alert drivers to the presence of approaching vehicles, thereby helping them identify safe gaps in the cross traffic and avoid potentially deadly collisions.

These types of systems are nothing new; MnDOT and other state DOTs have been developing them for more than a decade under the ENTERPRISE pooled fund program. MnDOT also recently kicked off a three-year project to deploy 20–50 of its Rural Intersection Conflict Warning Systems at selected at-risk intersections across the state. The main difference with the ALERT System is that it’s designed to be cheaper and easier to deploy than existing ICWS technologies. While that might sound like an incremental improvement, the difference for cash-strapped local agencies could be huge.

Since the ALERT System uses solar power, it doesn’t have to be hooked up to the power grid — which means that, in theory, county public works crews could install it themselves. The system also uses a simplified controller that doesn’t require a traffic signal technician to install and maintain, and detects vehicles using radar rather than in-pavement sensors. These factors might encourage greater adoption of ICWS technologies, which studies have shown to reduce both the frequency and severity of crashes.

The project is now in its second phase. It still faces a number of hurdles before could be ready to deploy, but Vic Lund, the traffic engineer for St. Louis County and the project’s main champion, says the results so far have been encouraging. In the video below, Lund shares his thoughts on the project, its challenges and the future of Intelligent Transportation Systems in Minnesota.

Learn more:

New study to shed light on environmental impacts of deicers

Even naturally derived products like corn syrup and beet juice can impact the environment when applied to salt mixtures for winter roadways.

A wide range of products, including the ones mentioned above, are added to deicing mixes to limit the amount of salt needed for Minnesota roads each winter. However, although information is available about the corrosive properties of various deicing chemicals, less is known about the toxicity of these compounds, especially to the aquatic environment.

Thanks to a recently completed project sponsored by the Clear Roads Pooled Fund, MnDOT winter maintenance personnel will better understand the relative toxicity of eight common deicing agents, which also include non-organics like Magnesium Chloride, Calcium Chloride and Potassium Acetate.

“Because the state has been trying a lot of different alternative chemicals, we wanted to get a better handle on the environmental impacts,” said MnDOT engineer Tom Peters, the technical liaison for the 26-member, Minnesota-led pooled fund for winter maintenance research.

In January, researchers plan to release a concise summary of the toxicity rankings to help winter highway maintenance managers consider both expected levels of service and potential harm to the environment when selecting a deicer.

A Dec. 3 webinar available on the Clear Roads website discusses their findings.

About Clear Roads

Minnesota is the lead state for the Clear Roads Pooled Fund, which conducts rigorous testing of winter maintenance materials, equipment and techniques. Other recent and upcoming research (see our Technical Summary on the program) includes a winter maintenance cost-benefit analysis toolkit, snow removal techniques at extreme temperatures and environmental factors that can cause fatigue in snowplow operators.

You can learn more about Clear Roads via the project’s e-newsletter.

MnDOT, LRRB announce new research projects

Minnesota’s next round of transportation research projects will explore using traffic signal data to predict crashes, evaluate various impacts of bicycling on the state and address a range of other transportation issues.

The state’s two transportation research governing boards have authorized funding for a total of 24 new research projects. MnDOT’s Transportation Research Innovation Group (TRIG) and the Local Road Research Board announced their Fiscal Year 2015 funding awards this week after hearing proposals from researchers in several states. MnDOT Research Management Engineer Hafiz Munir said the projects, which are listed below, reflect the needs of state and local practitioners.

“Many of the projects fall under the ‘traffic and safety’ or ‘materials and construction’ categories, which I think reflects MnDOT and local agency priorities,” Munir said. “Ultimately, all of these research projects address business needs of the people who build and maintain our roads.”

Links are provided to brief descriptions of each project (as provided by the researchers who submitted the proposals).

Environment

Maintenance

Materials and Construction

Multimodal

Policy and Planning

Traffic and Safety

Robotic message painter could help keep road crews safe

Using rollers and stencils to draw turn arrows and crosswalk stripes on roads seems a bit archaic to MnDOT District 3 Maintenance Superintendent Randy Reznicek, who asked researchers if they could develop an automated road message painter.

University of Minnesota-Duluth Associate Professor Ryan Rosandich has taken that vision and created an robotic arm that can spray-paint pavement signs, with the goal of saving crews time and keeping them safer.

Designed to be mounted to the front of a maintenance vehicle, the robot is operated remotely by a laptop, programmed with numerous types of messages.

In an earlier prototype, researchers developed a trailer painter that could be pulled behind a truck.

Crews currently use heavy, eight-foot by four-foot stencils and rollers to paint designs, with an estimated 75 percent of such work involving the repainting of existing markings.

“It takes two people to lift the stencils,” explained MnDOT maintenance worker Joe Gilk, whom Reznicek presented with the idea about five years ago. “This would eliminate one position. One person could just run the truck and you could use that other person in another area of our job.”

Rosandich, who heads the Mechanical and Industrial Engineering Department at the University of Minnesota-Duluth, led the initial development of a software system and trailer painter.

MnDOT has funded further research to develop the more technically difficult robotic arm, which it anticipates could be used in other aspects of maintenance work as well.

MnDOT District 3 maintenance worker Joe Gilk, left, and maintenance superintendent Randy Reznicek watch the demonstration of the robotic message painter, an idea that came from their office.
MnDOT District 3 maintenance worker Joe Gilk, left, and District 1 traffic engineer Rob Ege watch a demonstration of the robotic message painter, an idea that came from Gilk’s office.

Rosandich recently demonstrated the mechanical arm to a MnDOT road crew (no paint was used during the demonstration), but additional software and mechanical tweaks remain before researchers take the machine out for final testing on the pavement this spring.

A companion vision system is being developed to identify existing markings to guide the robot in the repainting of existing messages.

The robot’s three-segmented aluminum shell arm is capable of painting up to a 12-foot wide lane and has enough battery power for a whole day’s worth of work, Rosandich said.

Once the prototype is complete, researchers hope to find a manufacturer to develop and produce a machine that could be used by maintenance crews across the state. MnDOT has already had great success in deploying automated pavement patching systems in some districts.

Not only would a robotic message painter free up maintenance crews and speed up sign-painting, but Rosandich sees worker safety as its “biggest selling point.”

The start-up cost for manufacturing such a device is estimated to be $150,000.

Transitways spurring economic growth and development, improving mobility, and supporting equity

Landmark regional investments such as the transit expansion underway in the greater Minneapolis-Saint Paul metropolitan area have the potential to significantly change long-term land-use patterns and travel behavior. They also raise important questions for policymakers and elected officials regarding the potential return on investment.

ImageA new synthesis report from the Transitway Impacts Research Program (TIRP) pulls together seven years of research conducted by University of Minnesota researchers to help answer these questions. The report summarizes the actual and projected impacts of transitways on the Twin Cities region, offering lessons learned to help guide the build-out of the rest of the network most effectively. It concludes with a set of implications for policymakers.

The Twin Cities metro region is in the midst of a transit build-out. The Metro Blue Line (formerly known as Hiawatha), Red Line (Cedar Avenue Bus Rapid Transit), and Northstar Commuter Rail are in operation, and the Green Line (Central Corridor) opens next year. All are part of an expanding regional transit network.

Under the TIRP program, which was launched in 2006, University of Minnesota researchers provide an objective analysis of data, public perceptions, and complex impacts resulting from transitway investments. Their research is unique in its breadth, scope, and ability to provide real-time analysis of the changes experienced when a region introduces high-quality transit service.

“This body of research and objective analysis confirm the many positive ways that expanding our transit network supports economic competitiveness, greater accessibility to jobs, opportunities for populations with low incomes, and enhanced livability for our whole region,” says Kate Wolford, president of The McKnight Foundation, the synthesis sponsor. “This report undergirds why the accelerated build-out of our transit system is so important for the future prosperity of our region and its residents.”

More information about the synthesis and key findings

New videos show how frost heave ravages roads

Regardless of whether you’re familiar with the term “frost heave,” if you live in Minnesota and drive on the roads, you’re already familiar with its destructive capacity. Many of the dips, bumps, potholes and cracks that appear on our roads every spring are a direct result of frost heave, which occurs when water accumulates in the soil beneath the pavement and begins freezing and then thawing along with the changing seasons. The resulting expansion and contraction weakens the road base and leaves it susceptible to damage from traffic loading.

These new videos produced by the Local Road Research Board explain how frost heave works, and describe some of the strategies public works departments use to combat it. The top video is is the shortened, executive-summary version, while the bottom video is the full, 13-minute version meant for transportation professionals.

Patching pavement with microwaves and magnetite

On Wednesday, I had a chance to watch a demonstration of a uniquely Minnesotan pavement patching technology that combines an industrial-strength microwave with a special asphalt mix. What makes it “uniquely Minnesotan?” In addition to having been developed by University of Minnesota researchers and a Monticello-based company (and with some funding from MnDOT), this innovative method involves a special asphalt mix using magnetite, a mineral that abounds on Minnesota’s Iron Range.

It also addresses a very Minnesotan transportation problem: winter pavement repair. In the video above, Kirk Kjellberg of Microwave Utilities, Inc., highlights some of the benefits of using the 50,000-watt microwave to heat the pavement during patching. In addition to creating a longer-lasting patch, the microwave is considerably faster than many alternative techniques. The technology is still relatively new, but its supporters claim it allows for pavement repairs in the middle of winter that are as strong and durable as the ones road crews do in the summer.

The demonstration, which was organized for members of the Local Road Research Board, took place at MnDOT’s District 3 training facility in St. Cloud.

See also:

Minnesota transportation research blog