Tag Archives: rural intersections

Alternative designs identified for rural intersection warning signs

In an effort to reduce dangerous right-angle crashes at rural intersections, the Minnesota Department of Transportation (MnDOT) has deployed dynamic warning signs at approximately 52 sites throughout the state. Using sensor technologies, these signs provide real-time traffic information to motorists at non-signalized intersections where cross traffic does not stop, warning drivers on the minor road when it is unsafe to enter the intersection. However, a number of sign-related complaints have been received from local road users.

To address this issue, a team of University of Minnesota human factors researchers studied the current dynamic warning sign to identify what features or layouts may be problematic and propose safe and efficient alternatives. “We directed special emphasis to the most vulnerable driver populations, such as older drivers and novice teenage drivers,” says Nichole Morris, director of the HumanFIRST Laboratory and the study’s principal investigator. The study was sponsored by MnDOT.

The research team first surveyed Minnesota county engineers regarding their experiences, perceptions, and complaints or comments from local road users. “In addition to the largely negative feedback from drivers, we learned that many county engineers incorrectly interpreted how the system functions—a number of them were not sure how the fail-safe/inoperable mode works,” Morris says.

intersections2
Compared to the original sign (left column), the proposed alternative (right column) might offer comparable safety benefits but fewer potential risks. The sign consists of three different sign states: “Don’t cross/turn” state (top row); “Sign is on/operating and no traffic is detected” state (middle row); and “Sign is off/inoperable” state (bottom row).

Through iterative usability studies, researchers then examined alternative designs to produce three sets of sign options for a driving simulation study. The simulation study, with 120 participants, evaluated the safety effectiveness and efficiency of the sign options among teen drivers, middle-aged drivers, and older drivers.

The results indicate an overall safety benefit of sign deployment. “All the sign options except for one enhanced drivers’ gap-acceptance performance,” Morris says. “At intersections with inadequate sight distance, gap acceptance tended to be significantly better.”

The warning system’s benefits varied among the three age groups: middle-aged drivers demonstrated the most potential for safer gap acceptance; teenage drivers did not appear to be significantly assisted by the warning system, despite their self-reporting that the sign assisted them; older drivers tended to have a significantly reduced risk of accepting an unsafe gap but were also less efficient in using the system (they waited longer and rejected safe gaps more frequently).

The signs might simultaneously incur potential risks for drivers. “For example, the risk of stop-sign violations was found to be the greatest when the system was turned off due to a malfunction,” Morris says. Drivers also tended to check traffic much less often with the presence of the warning system.

After reviewing the study results, researchers identified an alternative sign design for future field tests that may demonstrate comparable safety benefits to the original sign with fewer potential risks. Specifically, certain design elements—an action word or icon—were recommended for consideration in follow-up field evaluations and future implementations.

“Intersection warning systems are an important tool for MnDOT as we push toward having zero deaths due to traffic crashes,” says Ray Starr, acting state traffic engineer with the Office of Traffic Engineering. “This study provides valuable information that is helping MnDOT consider any design changes for future versions of the warning system.”

The findings may also have a broader implication for the design, development, and implementation of effective intersection countermeasures on rural, urban, and suburban roadways, Morris adds.

This article originally appeared in the Center for Transportation Studies’ Catalyst Newsletter, August 2018. The full report, published May 2018, can be accessed at “Rural Intersection Conflict Warning System Evaluation and Design Investigation.”

Six effective low-cost safety improvements for roads

For the past 10 years, Minnesota and 37 other states have pooled their resources to test the effectiveness of roadway safety improvement strategies. The project, appropriately titled “Evaluation of Low-Cost Safety Improvements,” evaluates key strategies laid out in a national guidebook aimed at reducing the number of annual highway deaths.

Participating states say the project, which has now been extended a total of eight times beyond its original scope, has been a resounding success. MnDOT Safety Engineer Brad Estochen said the pooled-fund study has provided state DOTs much-needed evidence to gain support for implementing new safety improvements.

“Some states want to do a certain strategy, but don’t have the institutional support,” Estochen said. “Through the collaboration of the Peer Exchange, they have national results they can point to.”

We asked Estochen, MnDOT’s technical liaison for the pooled fund, to name his top strategies to come out of the study.

Traffic calming measures

Roadway

One phase of the study used simulated driving scenes to examine methods of traffic calming (i.e., getting drivers to slow down) in  rural towns. The research found that drivers were most impacted by chicanes — extra curves in the road — and the presence of parked cars on the street. An alternative strategy, curb extensions (also called “bulb-outs”), was found to offer only a small potential safety benefit or no benefit at all.

(Read more about this phase of the study.)

Nighttime visibility improvements

DSC_6498

Researchers also looked at ways of improving nighttime driver visibility on rural roads. Edge lines and post-mounted delineators were selected as the best alternatives for improving curve visibility at night, with curve detection improving 12 percent to 70 percent due to enhanced edge lines. The results are significant, since horizontal curve sections of two-lane rural roads are a major source of roadway fatalities.

(Read more about this phase of the study.)

Flashing beacons at stop-controlled intersections

One way to make drivers aware that they’re approaching a stop sign is to add a flashing beacon to the intersection. Researchers installed various configurations of flashing beacons at more than 100 sites in North and South Carolina and examined the crash data before and after installation.

Courtesy of K-Kystems
Courtesy of K-Kystems

Results indicate that standard flashing beacons, as well as some “actuated” beacons (i.e. those that only turn on when traffic is approaching the intersection), are not only effective at reducing crashes, but also economically justifiable based on cost-benefit calculations.This research helped pave the way for more widespread adoption of Minnesota’s Rural Intersection Conflict Warning Systems (RICWS).

(Read more about this phase of the study.)

Edgeline rumble strips

DSC_4106pse

Edgeline rumble strips on curves were shown to significantly improve safety in the third phase of the study, which tested a variety of techniques.

Whereas rumble strips are traditionally ground into centerline or on the shoulder, Kentucky and Florida experimented with placing rumble strips right along the white edgeline of curved sections of road. This method was shown to reduce overall crashes by 29 percent.

(Watch the FHWA website for updates on this phase of the study.)

Red light enforcement devices

Red light indicator
In Florida, crashes due to people running the red light fell by 33 percent thanks to a small light that turns on when the signal turns red. This little light bulb, which is placed on top of a signal, allows for a police officer to sit at the other end of the intersection rather than pursue a car right through the intersection. Not only is it safer, but motorists are also more likely to obey the signal if they know police might be watching on  the other side.

Researchers are also still collecting data on the other techniques studied in phase three, including surface friction treatments on curves and ramps and larger curve warning signs (called chevrons). Watch the FHWA website for updates.

Wider roads in rural areas

manufacturing

Could simply shifting the edge lines of a rural road reduce the number of accidental drive-offs?

Yes, according to this study, which evaluated the effectiveness of various lane-shoulder width configurations on rural, two-lane undivided roads using data from Pennsylvania and Washington.

In general, results were consistent with previous research, showing crash reductions for wider paved widths, lanes and shoulders. For specific lane-shoulder combinations, the study found a general safety benefit associated with wider lanes and narrower shoulders for a fixed pavement width; however, there are exceptions. The report has a chart that shows the optimal lane-shoulder combinations for different sizes of roads.

In theory, there should be no additional cost for these strategies, as an edgeline can be re-striped as part of an existing resurfacing project.

White House honors MnDOT traffic boss for work on rural intersection safety

The White House named Minnesota Department of Transportation State Traffic Engineer Sue Groth one of its 12 transportation “Champions of Change” for her role in implementing life-saving technology to help prevent collisions at rural intersections. The rural intersection conflict warning systems, which use sensors and lights to give motorists real-time warnings about traffic conditions, were developed by MnDOT’s Office of Traffic, Safety and Technology.

It’s worth noting that MnDOT Research Services and the University of Minnesota are also currently working on a project to develop a low-cost version of these systems using LEDs and solar panels. The ongoing research, being conducted by University of Minnesota— Duluth Professor Taek Kwon, is a continuation of the Advanced Light-Emitting Diode Warning System project completed in 2010.

Here’s the press release from MnDOT:

ST. PAUL, Minn. – On Wednesday, May 8, 2013, the White House honored Sue Groth, Minnesota Department of Transportation’s state traffic engineer, as one of 12 people who are Transportation “Champions of Change.” The Champions event, “Transportation Technology Solutions for the 21st Century,” focused on individuals or organizations that have provided exemplary leadership in developing or implementing transportation technology solutions to enhance performance, reduce congestion, improve safety and facilitate communication across the transportation industry at the local, state or national level.

“These Champions represent the very best in American leadership, innovation and progress,” said Secretary Ray LaHood. “I’m proud to recognize these transportation leaders who work every day to grow our economy and help us reach our destinations more quickly, efficiently and safely.”

The MnDOT Office of Traffic, Safety and Technology has been selected as a Champion of Change for their work to reduce fatal and life-changing crashes on Minnesota roadways, while enhancing mobility for all users. OTST is being honored for designing, testing and helping to deploy dozens of life-saving rural intersection conflict warning systems throughout Minnesota, while leading a national effort to do more of the same throughout rural America. These systems save lives at rural intersections that might otherwise not warrant or afford more traditional traffic control devices or geometric improvements.

See also: