Category Archives: Traffic and Safety

New fuel cell prototype could power rural ITS applications

Intelligent transportation systems (ITS) technologies can be used to enhance transportation safety and mobility, but the sensors and communications equipment needed for ITS applications typically require access to electricity. In rural areas, limited access to the power grid can make it challenging to implement ITS devices.

Rural intersection roadway lighting
In addition to powering ITS devices, the fuel cells could provide power for rural
intersection roadway lighting. Photo source: http://www.flickr.com/photos/36521983488@N01/175482261/

Current solutions for providing power to off-grid locations include battery packs or diesel generators, both of which require constant maintenance to recharge, refuel, or replace. Other alternatives include solar panels and wind turbines, but cost and performance concerns have limited their use.

“One of the issues with these green power alternatives, such as solar panels, is dependability… especially in the long, cold, and dark Minnesota winters,” says Victor Lund, a traffic engineer with St. Louis County Public Works. Until this technology matures, there is a need for other options that can provide confidence in generating power, Lund says.

To provide a more effective and dependable power alternative, researchers from the University of Minnesota Duluth (UMD) have developed a portable prototype system that uses hydrogen-based fuel cells to generate electricity. The UMD research team was led by chemical engineering associate professor Steven Sternberg, and the project was sponsored by the ITS Institute at the University of Minnesota.

The hydrogen-based fuel cell provides a clean, compact, high-efficiency energy source for an accompanying battery pack, which could be used to operate various ITS devices. The prototype is completely independent of the power grid, works well in cold weather, and requires maintenance only once each week for recharging. The cost of the system is about $7,500, with an additional operating cost of $2,000 per year for fuel materials.

Potential applications include powering variable message signs, dedicated short-range communication technologies, and warning blinkers on traffic signs. According to Lund, the system’s applications extend beyond powering ITS devices. For instance, the fuel cells could be used for rural intersection roadway lighting or as a back-up source for traffic signals in case of a power outage.

Reprinted from CTS Catalyst, June 2013.

About those roundabouts

One of my unofficial duties as a MnDOT employee is to respond to a near-constant barrage of opinions from my family and friends regarding the condition of our state’s roadways. (My wife, for example, half-jokingly tries to ascribe personal responsibility to me for the congestion she faces on her morning commute.) Interestingly, one of the issues that gets brought up to me most often in private conversations is roundabouts — the circular intersections that are widely praised by engineers but often vilified by a skeptical public.

From a public interest perspective, the verdict on roundabouts is overwhelmingly positive. With very few exceptions, roundabouts have been shown to dramatically reduce both the frequency and seriousness of traffic accidents when compared to other types of intersections. One oft-cited source, the National Insurance Institute for Highway Safety, reports that U.S. intersections converted to roundabouts have experienced a 35-47 percent decrease in crashes and an 72-80 percent decrease in injury crashes (source here). Moreover, because the don’t have stop signs or traffic lights, roundabouts have been found to reduce traffic delays and pollution.

Perhaps not surprisingly, research on these potential benefits has precipitated a rash of roundabout construction. In Minnesota alone, 115 have already been built, with another 39 either planned or under construction, according to the Pioneer Press. Love them or hate them, roundabouts are becoming a fact of life here.

Of course, not everyone loves them. In spite of their stellar  record, roundabouts remain something of a political lightning rod. This article in the Mankato Free Press and this news segment from KSTP provide typical examples of the kind of skepticism officials face when proposing to put in a roundabout. The problem is persistent enough that many officials see a need to develop a public relations game plan. On June 19, the Transportation Research Board is offering a free webinar entitled “Community Outreach: Successful Outcomes for Roundabout Implementation,” designed to help transportation professionals understand and respond to political opposition to roundabouts. It’s free for employees of TRB sponsor organizations (including MnDOT); a $99 registration fee is required for employees of non-sponsors.

For those who are unfamiliar with roundabouts, there are some good resources designed to help people understand their purpose and benefits. Several years ago, the Local Road Research Board produced the video above (along with an accompanying brochure). MnDOT also has a resource page devoted to explaining the use of roundabouts.

Those with more than a passing interest in the subject might also want to check out these recent MnDOT/LRRB-sponsored studies:

‘Three Ways to Cook a Pothole’

In April, we posted about an innovative pothole-filling technology being developed by the Minnesota Department of Transportation and the University of Minnesota, Duluth. The technique involves zapping pothole patches and the surrounding pavement with a special truck-mounted, 50,000-watt microwave. Researchers have found that heating the base and the patch material at the same time creates a stronger, longer-lasting bond that provides for a more permanent pothole fix.

Last week, the MnDOT/UMD microwave technology found its way into a new MnDOT video (above) that also explores two other experimental pothole-patching methods. One involves using a large “electric oven”-type heating element instead of a microwave. The other utilizes a new exothermic (i.e. heat-generating) asphalt mixture containing taconite from northern Minnesota mines. The video compares the potential benefits of all three of the new technologies, which the department hopes will someday lead to “more pothole-patching power for the taxpayer dollar.”

See also:

New publication highlights success in traffic safety

Cover of TZD Decade of Progress reportThe Minnesota Toward Zero Deaths program has published Minnesota TZD: 10 Years of Progress (PDF), a 12-page report highlighting the program’s successes in the decade since it began. Before 2001, efforts to improve traffic safety were mostly carried out by individual state agencies. In response to an increasing trend in the number of traffic-related fatalities and serious injuries in the state, the Minnesota Departments of Public Safety, Transportation, and Health in 2003 established the Toward Zero Deaths (TZD) program to integrate safety programs in Minnesota. Since then, traffic fatalities have decreased by 40.5 percent. This report describes some of these efforts in the areas of driver behavior, roadway environment, emergency response, and partner collaboration.

CTS Research Conference videos and presentations now available

If you weren’t able to attend the CTS Research Conference, or, if you simply want to check out presentations from other sessions, the videos of the keynote and luncheon speeches, as well as PPTs from most of the concurrent sessions, are now available on the CTS website. You won’t want to miss Minnesota Department of Health Commissioner Ehlinger’s tuneful take on the links between health and transportation and Elizabeth Deakin’s view of new ways to get around.

Portable weigh-in-motion system demonstration

Weigh-in-motion (WIM) systems consist of sensors placed in road pavements to measure the weight of vehicles passing over them, along with other data such as speed, axle load and spacing, and vehicle type. This data is used to enforce weight limits on trucks and is also useful in a wide range of other applications, such as pavement design and traffic analysis.

However, constructing and maintaining permanent roadside WIM stations is expensive, so these systems are installed primarily on roadways with heavy traffic, such as interstate and trunk highways, and rarely used for rural local roads. Meanwhile, heavy truck volumes on local roads are increasing, significantly shortening their lives. A less costly, portable WIM system is needed for such roads so that collected data can be used to better design these roads to accommodate heavy truck traffic.

One solution for bringing WIM technology to local roads is to implement a portable, reusable system similar to pneumatic tube counters used to conduct traffic counts. With funding and technical assistance from MnDOT and the Local Road Research Board, Professor Taek Kwon of the University of Minnesota—Duluth has developed a prototype system that has already proven to be nearly as accurate as the more expensive, permanent systems.  MnDOT Research Services staff drove up to MnROAD this week to observe a live demonstration of the technology, and made this short video.

The research being conducted here is part of an implementation project based on Kwon’s original study, the results of which can be found in this research report and its accompanying two-page technical summary from MnDOT Research Services.

White House honors MnDOT traffic boss for work on rural intersection safety

The White House named Minnesota Department of Transportation State Traffic Engineer Sue Groth one of its 12 transportation “Champions of Change” for her role in implementing life-saving technology to help prevent collisions at rural intersections. The rural intersection conflict warning systems, which use sensors and lights to give motorists real-time warnings about traffic conditions, were developed by MnDOT’s Office of Traffic, Safety and Technology.

It’s worth noting that MnDOT Research Services and the University of Minnesota are also currently working on a project to develop a low-cost version of these systems using LEDs and solar panels. The ongoing research, being conducted by University of Minnesota— Duluth Professor Taek Kwon, is a continuation of the Advanced Light-Emitting Diode Warning System project completed in 2010.

Here’s the press release from MnDOT:

ST. PAUL, Minn. – On Wednesday, May 8, 2013, the White House honored Sue Groth, Minnesota Department of Transportation’s state traffic engineer, as one of 12 people who are Transportation “Champions of Change.” The Champions event, “Transportation Technology Solutions for the 21st Century,” focused on individuals or organizations that have provided exemplary leadership in developing or implementing transportation technology solutions to enhance performance, reduce congestion, improve safety and facilitate communication across the transportation industry at the local, state or national level.

“These Champions represent the very best in American leadership, innovation and progress,” said Secretary Ray LaHood. “I’m proud to recognize these transportation leaders who work every day to grow our economy and help us reach our destinations more quickly, efficiently and safely.”

The MnDOT Office of Traffic, Safety and Technology has been selected as a Champion of Change for their work to reduce fatal and life-changing crashes on Minnesota roadways, while enhancing mobility for all users. OTST is being honored for designing, testing and helping to deploy dozens of life-saving rural intersection conflict warning systems throughout Minnesota, while leading a national effort to do more of the same throughout rural America. These systems save lives at rural intersections that might otherwise not warrant or afford more traditional traffic control devices or geometric improvements.

See also:

U of M transportation research highlights video

U of M transportation research highlights during 2012-2013 include a smartphone app for visually impaired pedestrians, pedestrian and bicyclist safety in roundabouts, methods for counting bike and pedestrian traffic on trails, and a filter that takes phosphorous out of storm water.

The people (and machines) who fix Minnesota’s potholes

In Minnesota, with our often wildly unpredictable weather and constant freeze-thaw cycles, potholes are a fact of life. Anyone who’s climbed into a motor vehicle in the last month or so has doubtlessly encountered countless reminders of this dismal reality. Fortunately, we have a small army of public works professionals devoted to eradicating this perennial nuisance. The Minnesota Local Road Research Board recently produced this video, which nicely explains the various methods used to combat potholes in Minnesota.

Potholes form when water invades cracks in the pavement and infiltrates the soil beneath it. When that water freezes, it stretches the road surface, causing the fractures to expand. After a few cycles of freezing and thawing, the pavement begins to buckle and eventually collapses under the weight of passing traffic, creating disruptions in the road’s surface.

Road crews use a variety of methods to fill potholes. The simplest method is the “throw-and-go” procedure, in which workers simply shovel an asphalt mixture into the pothole and pack it down until the road’s surface is smooth. A related method is “throw-and-roll,” where the patch is compacted using an asphalt roller.

Other methods include:

  • “semi-permanent” patching, in which workers clear the pothole of moisture and debris and then square the edges with a pavement saw before applying the patch;
  • “spray injection,” which involves using specialized equipment to blast water and debris out of the pothole before spray-filling it with asphalt mix and finally applying a dust coat of dry aggregate on top; and
  • “slurry” or “microsurfacing” crack filling, in which a slurry of aggregate, asphalt emulsion and mineral filler is placed over a crack in the pavement and leveled off using a squeegee.

This Asphalt Pavement Maintenance Field Guide (PDF), co-funded by MnDOT and produced by CTS, provides a handy how-to guide to pothole patching and other types of pavement repairs commonly applied by public works professionals in Minnesota.

See also: