Category Archives: Policy and Planning

Free Complete Streets webcast next week

On Tuesday, June 4, the University of Minnesota is hosting a free Complete Streets seminar. The event will serve as a preview of a forthcoming guide, “Complete Streets Planning and Implementation at Multiple Scales Guidebook and Case Studies,” funded by MnDOT and the Minnesota Local Road Research Board.

Unfortunately, the event itself is sold out, but you can still watch it online for free via webcast. You can find all the relevant information on this web page, including direct links to the webcast sessions:

http://www.eventbrite.com/event/6109392357

According to the announcement, the event will cover “examples of Complete Streets policies, design guidance, engagement strategies, and financing mechanisms that help communities move from policies and plans to on-the-ground projects.”

New video showcases Minnesota city and county stormwater management techniques

Earlier this week, the Minnesota Local Road Research Board released this new video showcasing best practices for local stormwater management. Although it’s primarily a training video for engineers and other public works professionals, non-transportation geeks might also enjoy learning about some of the interesting, innovative techniques being employed in cities and counties across the state.

Those who’d prefer not to watch the whole 14-minute video can skip ahead by clicking on these highlights:

  1. Woodbury’s stormwater ponds (1:52)
  2. Washington County’s bioretention gardens (2:56)
  3. “Green roof” bioretention method (4:02)
  4. Maplewood’s underground detention system (4:39)
  5. Greenway stormwater project in Minneapolis (6:03)
  6. Minnetonka’s hydrodynamic separator treatment system (7:47)
  7. Arden Hills’ infiltration (swales) system (8:26)
  8. Shoreview’s permeable pavements (9:52)
  9. Ramsey-Washington permeable pavement project (11:11)
  10. Tree boxes/trenches in Ramsey-Washington (12:06)

Overall, the video gives you an appreciation for the incredible amount of planning and work that goes into managing stormwater runoff — a task that’s critical to protecting the state’s waterways from pollution (but which many people no doubt take for granted). For those who want to learn more, the best management practices showcased here are examined in greater detail in a recent LRRB report, “Decision Tree for Stormwater BMPs,” which is available for free on the LRRB and MnDOT Research Sevices websites:

Searching for common ground in the ITS privacy debate

Should your vehicle be able to gather, store, or transmit information about where it’s been—or where it’s going? On the surface, it seems like a simple question. However, it inevitably gives rise to many others: Who will see the data? How will it be used? Can it be given or sold to a third party? Under what circumstances? Clearly, there are no straightforward solutions or answers in the debate surrounding privacy issues in intelligent transportation systems (ITS).

“The difficulty and complexity of these issues has resulted in an increasingly disconnected public discussion about privacy and ITS,” says Frank Douma, a researcher in the University of Minnesota Humphrey School of Public Affairs. “In one camp are privacy advocates, and in the other camp are technologists and the ITS industry, who generally view privacy issues as secondary when compared with the tremendous benefits of these technologies. The disconnect often results in the two sides talking past each other, with too little energy spent finding potential common ground.”

According to Douma, one cause of this disconnect is a lack of clarity on both sides about the needs, goals, and interests of those involved. To address this divide, a multidisciplinary team of U of M researchers has published a report that sheds new light on the ITS privacy debate by mapping and assessing the interests of all participants. The team was led by Douma and research assistant Tom Garry, and the project was sponsored by the ITS Institute, a program of the University of Minnesota’s Center for Transportation Studies.

The ITS privacy debate involves an interlaced web of participants with multiple interests.

Researchers began their analysis by pinpointing exactly who should be concerned about privacy as ITS technologies are developed and implemented and what their goals are with respect to privacy data. A number of diverse participant groups were identified, including ITS developers, transportation users, the government, data collectors, data users, and secondary users such as marketers and litigants.

“We found few black-and-white divides among participants in the privacy debate,” says Douma. “For example, transportation users are not simply pro-privacy, and data collectors are not inherently anti-privacy. Individuals are willing to share their locational data in exchange for real benefits in a variety of circumstances, such as GPS guidance or electronic tolling. However, there are also limits to this willingness.”

Because of this nuanced landscape, researchers concluded that while there is no all-encompassing solution to the ITS privacy debate, there are a number of potential avenues and tools for finding common ground. Their recommendations include setting limits on the time data can be retained, prohibiting unrelated secondary use of data, designing ITS systems with privacy in mind, avoiding the collection of personally identifiable locational information when possible, and implementing privacy policies such as the use of clear privacy notices.

“It’s also important to remember that the positions of participants in this debate are not entrenched,” says Douma. “As technology changes, privacy expectations will also likely evolve as well, such that what may seem important today is less so, and something we are not considering today could be critically important in the future. Consequently, it’s very important that this conversation continue in the years to come.”

Reprinted from the CTS Catalyst, May 2013.

Bicycle and pedestrian counting initiative monitors nonmotorized traffic in Minnesota

In a continuing effort to better understand nonmotorized traffic patterns in Minnesota, researchers from the Humphrey School of Public Affairs have partnered with the Minnesota Department of Transportation (MnDOT) to develop guidelines and analyze information collected in bicycle and pedestrian traffic counts throughout the state.Image

The research team, led by Professor Greg Lindsey, aims to develop consistent methods for monitoring and assessing bicycle and pedestrian traffic that can be used in both permanent, automated traffic counts and short-term manual counts. The goal is to provide evidence for decision making that Minnesota cities have historically lacked, Lindsey says. “We’ll have practical, useful information about bike and pedestrian traffic that can help local jurisdictions as they plan and invest in infrastructure,” he says.

As part of the 18-month project, the research team created a set of tools and methods for short-duration manual counts of nonmotorized traffic, held training workshops, and organized a statewide counting effort involving 43 Minnesota municipalities last fall. The overall response was positive, Lindsey says, and some communities are already using their collected data to submit grant proposals for projects related to nonmotorized traffic.

In addition, Lindsey and his team have examined traffic information from six permanent counters on Minneapolis trails. The continuous counts collected at these locations help the researchers understand traffic patterns and the factors that affect them, Lindsey says. For example, the team found that bike and pedestrian traffic vary by trail type, time of day, day of week, and season.

“Once we know the patterns at permanent sites, we can develop factors that help us expand short-term counts from other locations with similar conditions,” Lindsey says. The factors could be used to estimate anything from total daily traffic to annual traffic, as long as the short-term count location is similar to an existing model.

Based on the overall results of the study, the research team developed recommendations for MnDOT. These include continuing to coordinate statewide short-term field counts, demonstrating the feasibility of automated counting technologies, and beginning to integrate nonmotorized and vehicular traffic databases.

Based on these recommendations, MnDOT is moving forward with a new project that will collect more short- and long-duration counts throughout Minnesota, says Lisa Austin, ABC Ramps coordinator at MnDOT. The next phase of work aims to collect counts for pedestrians on sidewalks, bicyclists on shoulders and in bike lanes, and pedestrians and bicyclists on multiuse trails. MnDOT plans to install more permanent, automated counters in suburban and midsize cities and to conduct additional manual counts in smaller cities around the state, Austin says.

“We’re really excited that this bike and pedestrian counting project is moving into wider implementation,” Austin says. “This next phase will help us see which automated counting technologies work well and make recommendations for moving forward on a broader scale.”

Reprinted from the CTS Catalyst, May 2013.

U of M transportation research highlights video

U of M transportation research highlights during 2012-2013 include a smartphone app for visually impaired pedestrians, pedestrian and bicyclist safety in roundabouts, methods for counting bike and pedestrian traffic on trails, and a filter that takes phosphorous out of storm water.