Category Archives: Environment

GPS-equipped mowers to save money, reduce noxious weeds

Putting GPS units on MnDOT highway mowers is expected to speed mowing operations and cut herbicide usage by 50-percent in metro area ditches, reducing groundwater contamination.

MnDOT’s Metro District highway maintenance division will be one of the first — if not the first — state agencies in the country to equip the majority of its maintenance tractors with Automated Vehicle Location systems.

Not only will crews be able to effortlessly track their progress — reducing paperwork and freeing time for other maintenance activities — but the AVL’s live mapping software will help them avoid noxious weed patches, thereby reducing their spread.

Last year, MnDOT tested the GPS software on five mowers.
Last year, MnDOT tested the GPS software on five mowers.

“AVL alone enables the tracking of vehicle positions, but when combined with equipment sensors and an on-board monitor with user interface, it becomes a very innovative way to reduce operation costs,” said MnDOT Project Engineer Trisha Stefanski, who applied for funding from MnDOT’s Transportation Research Innovation Group for the pilot project.

Vehicle tracking systems have been shown to reduce chemical usage by crop farmers, improve route efficiencies in truck driving and help cities and counties track snowplows.

The on-screen mapping shows the location of weed patches, so mowers can avoid them, reducing their spread.

MnDOT Metro, which tested five AVL units last year, hopes to equip as much of its remaining fleet as possible.

In the grant application, Stefanski estimated the technology will pay for itself in about a year’s time, largely due to herbicide savings.

Noxious weeds

MnDOT is required by law to manage certain noxious weeds along its highways. Each year, weed inspectors survey one-quarter of metro ditches for weeds, which enables them to concentrate eradication efforts on the worst areas.

Touch-screen maps will contain the noxious weed locations so operators can see weed patches and mow around them.

Herbicide usage is estimated to drop an estimated $100,000 to $150,000 per year. (This estimate was based on the original funding request. Final numbers haven’t been released.)

Operators can use the on-screen map to mark the location of new patches of noxious weeds.

Noxious weeds like Wild Parsnip — which can cause painful skin boils — might even be eradicated, reducing the risk for field crews, such as construction workers and Adopt a Highway volunteers.

Until now, maintenance crews have relied on paper maps to identify weed locations, which is less effective.

“What’s better, looking at a live screen when you’re going down the road and seeing where weeds are coming up, or trying to refer to a piece of paper?” Stefanski said.

Other advantages

The AVL equipment will also allow for automated reporting.

Mower operators can use the on-board AVL monitor to mark the location of guardrail hits, potholes, washed-out culverts, debris and unmarked noxious weeds.

Operators can electronically mark the location of guardrails, debris, potholes and more.
Operators can electronically mark the location of guardrails, debris, potholes and more.

Currently, operators must track their activities using hand-written forms or spreadsheets in the office.

The AVL system will also automatically track their location history, allowing operators to optimize their routes based on how long it took to mow segments in the past.

It will also be easier to answer questions from the public, who want to know the last time a certain ditch was mowed.

“Making everything geographically located adds so much analysis opportunity,” Stefanski said.

MnDOT also has AVL technology on an herbicide applicator to better track where it’s sprayed. Other future potential applications including pothole patching and road sweeping operations, Stefanski said.

Deicing treatments tested at Valleyfair, Canterbury Park

Excalibur and the High Roller may be closed for the season, but Valleyfair Amusement Park still has one attraction open for the season: a driving track for Minnesota snowplow drivers.

MnDOT-funded researchers are studying the effects of weather and vehicle traffic on different deicing treatments in the parking lots of Valleyfair and Canterbury Park in Shakopee, Minn.

It’s been a busy winter, but each week MnDOT Metro District snowplow drivers make one last stop before heading home, to apply different combinations of salt and anti-icing chemicals to nine 1,000-foot driving lanes. They also drive over each lane multiple times to test the effect of traffic.

“We’re running trucks up to 30 miles per hour with different speeds, wind conditions, traffic conditions and pre-wetting chemicals,” said Steve Druschel, a researcher with the Minnesota State University, Mankato. “Each lane is its own experimental unit.”

Professor Steve Druschel speaks with MnDOT snowplow driver John Hokkanen.
Professor Steve Druschel speaks with MnDOT snowplow driver John Hokkanen.

Professor Druschel’s students will review more than 17,000 photos from time-lapsed cameras to document how the snow melted in each experimental run.

“The influence of factors like pavement type and age, traffic volume, truck proportion, weather conditions and sun presence will be assessed to evaluate which techniques have special advantages for certain situations or roadways,” said Maintenance Research and Training Engineer Tom Peters.

In 2010, Druschel tested 25 anti-icing compounds in 1,500 different combinations in a laboratory to study the effectiveness of different deicers.

“Public work superintendents commented, ‘Great work. It looks good, except it’s all in the lab. Beakers aren’t what people drive on,’ ” Druschel said. “So we’re taking it from the two-inch ice cup to the real world in phase two of this study.”

With rock salt prices quadrupled, finding the most cost-effective methods of treatment is important.

This latest research will help determine the best times for applying anti-icing treatments and examine whether certain chemicals — such as a pre-storm liquid treatment that costs twice as much — melt enough snow to be worth the extra cost.

Test runs in Shakopee are strictly experimental, but in Mankato students are analyzing how real-world salting treatments are working on the North Star Bridge.

An article in the Mankato Free Press tells how Druschel’s team is collecting road melt runoff and documenting bridge traffic. (Big trucks, for instance, squeeze more water out of the snow.)

MnDOT snowplow driver John Hokkanen makes a test run at the research site at Canterbury Park.  (Photo by Nick Busse)
MnDOT snowplow driver John Hokkanen makes a test run at the research site at Canterbury Park. (Photo by Nick Busse)

Students plan to use time-lapsed photos, along with weather data and snowplow records, to determine what chemical treatments worked best – and when.

With the multi-pronged research project, Druschel hopes to put definitiveness to what some snowplow drivers have already tried in the field.

“The key to it is not so much that we’re so smart and we have a better idea or are inventing something new,” he said. “We’re just trying to enhance what they are already doing.”

Helpful resources

Salt Brine Blending to Optimize Deicing and Anti-Icing Performance –Technical Summary (PDF, 1 MB, 2 pages) and Final Report (PDF, 11 MB, 151 pages) (previous study) 

 

Flume research simulates Red River flooding to test road protections

Flooding in the Red River Valley is an almost annual occurrence, and the cost to roads, property and lives is huge.

Highway 1 gets torn up year after year, only to be rebuilt in time for next year’s flood, joke residents in the little town of Oslo, which becomes an island whenever the roads close.

While not much can be done to prevent swollen farm fields from overflowing, what if a road embankment itself could be bolstered to prevent physical damage to the underlying structure of the road?

“We can’t just raise the road because it would create backwater upstream,” explained JT Anderson, Assistant District 2 Engineer. “Our best bet is to let the water over-top the road and try to protect the road when it does.”

Researchers have built a flume inside the University of Minnesota’s St. Anthony Falls Laboratory to test six methods of embankment protection specific to the needs of towns like Oslo.

“It is not uncommon for one over-topping site to have a half-mile long stretch of road being damaged,” said university research engineer Craig Taylor. “One road being protected should cover the cost of the study and the cost of deploying the erosion control product for that road.”

Nationally, research of this kind has mostly been restricted to high-intensity flooding.

“Those really high-depth, short duration events, you can only protect an embankment with concrete and boulders,” Taylor said. “With longer duration, low-depth floods, we may be able to protect roads with soft armoring, like reinforced vegetation.”

The damage in northern Minnesota has been the worst on east-west roads, where the river flow runs perpendicular to the center of the road, causing the road to act like a dam and the water to jump at the edges.

“It eventually eats through that road embankment and makes the road collapse,” Anderson explained.

Researchers will examine how a cross-section of a road holds up under various erosion control methods at different levels and speeds of water-flow.

The damage from flooding was less in 2010 after engineers added rocks and vegetation to the side of Highway 9, near Ada.
The damage from flooding was less in 2010 after engineers added rocks to the side of Highway 9, near Ada, Minn.

One test will be to slow the flow of water by covering the road shoulder with a rubberized membrane and temporary water-filled tubes.

Permanent schemes — such as turf reinforcement mats and rocks — will also be tested.

“These methods have been deployed in the field, but you never really know under which conditions they survived or failed,” Taylor said.

In the Red River Valley, MnDOT engineers have tried a combination of vegetation and boulders, as well as concrete blocks covered with topsoil, to protect highways. Flattening a slope is another option.

“I expect that a single erosion protection technique will not cover every situation our road embankments may be exposed to at any given location,” Anderson said.  “Rather, I expect we would look at using several different techniques in concert to develop an effective erosion protection system for the expected velocities.”

Culvert research aims to protect endangered small fish

The Topeka shiner
The Topeka shiner, a small minnow that inhabits slow-moving prairie streams, was once widespread and abundant in portions of Iowa, Kansas, Minnesota, Missouri, Nebraska and South Dakota. It now inhabits less than 10 percent of its original geographic range.
(Photo courtesy of the Minnesota Department of Natural Resources)

In a new study funded by the Minnesota Department of Transportation, engineers are trying to ensure that new culverts do not degrade the habitat of an endangered fish in southern Minnesota.

The state has already researched how to better accommodate fish passage at river and stream crossings. Now it is looking at design guidelines for culverts that specifically impact the Topeka shiner, a small endangered fish found in five Midwestern states.

In Minnesota, the Topeka shiner is known to live in at least 57 streams, totaling 605 miles, within the Big Sioux and Rock River watersheds.

“The Topeka shiner is reported to have been erased from about 50 percent of its historic range in Iowa and much of its range in Minnesota, which is why Minnesota is so intent on doing what it can to help this fish thrive here,” said Alan Rindels, MnDOT’s project coordinator for the research.

The Topeka shiner is endangered due to the degradation of stream habitat, stream channelization, non-native predatory fishes and construction within waterways.

Culverts might impede the passage of this small minnow for a number of reasons, including that they might be too long, lack sufficient depth or carry water too fast.

Culverts allow water to pass under roads.
Culverts (also called small bridges) allow water to pass under roads. Occasionally, they can harm a stream’s fish habitat by inadvertently acting as a barrier to fish passage or migration. On the West Coast, large-scale efforts are under way to protect migratory salmon, and in Minnesota, culvert designers are concerned about fresh water species.

In addition, long culverts block sunlight, which possibly discourages fish from swimming through. Typically, older culverts are replaced with longer culverts to improve road safety and minimize maintenance costs. To eliminate or minimize impacts to the Topeka shiner, the state is trying to determine if light mitigation strategies are necessary.

Researchers from the University of Minnesota’s St. Anthony Falls Research Laboratory will monitor a newly installed culvert (110 feet in length) and a few other culverts in critical Topeka shiner habitat streams during spawning and fall movement.

Additionally, a laboratory-based light manipulation experiment will examine the behavior of the warm-water fish when presented with a dark culvert.

Guidelines for culvert design in Topeka shiner habitat will be developed based on these results, as well as examples from neighboring states. The state is also collaborating with the U.S. Fish and Wildlife Service and affected Minnesota counties.

Permeable pavements could protect the environment, save taxpayer dollars

KSTP has a nice story today on the Minnesota Department of Transportation’s ongoing research into permeable pavements at the MnROAD research facility. (The video isn’t embeddable on WordPress, but you can find a direct link here.)

Permeable pavements (also known as “porous” or “pervious” pavements) are designed to allow water to pass through roadways and infiltrate directly into the underlying aggregate and soil. Their primary effect is to reduce stormwater runoff, which carries harmful materials from the road’s surface out into waterways. Of course, reducing runoff also mitigates the need for the kinds of costly drainage structures that are normally required to manage stormwater. Permeable pavements also reduce noise and mitigate the potential for hydroplaning, among other documented benefits.

These types of pavements are already used in some areas in Minnesota — mainly in parking lots and city streets — and MnDOT has been studying their potential use for full-depth roadway pavements. As the video indicates, so far the results have been encouraging. (You can read more about MnDOT’s ongoing research on the MnROAD website.)

As a side note, the amount of water these pavements can absorb is quite impressive. Last month, we posted a new Local Road Research Board video on stormwater management. In one scene, a public works crew dumps what appears to be several hundred gallons of water onto a permeable pavement and watch as it disappears almost instantaneously. (Watch the clip here.)

Here are the results of some recent permeable pavement studies here in Minnesota:

Advanced hybrid buses have better fuel economy, fewer emissions

One of Metro Transit’s new advanced “super hybrid” buses—built in Minnesota and billed as the cleanest, most efficient diesel-electric hybrid buses in the United States—garnered national attention at the American Public Transportation Association’s Bus and Paratransit Conference May 5–8 in Indianapolis.

Photo of superbus
Photo: Metro Transit

Unique because of its all-electric accessory systems, the bus was featured at the event so that transit professionals from across the country could experience this new hybrid technology firsthand, says Chuck Wurzinger, assistant director of bus maintenance at Metro Transit. The bus is one of two advanced hybrids built for Metro Transit in 2012. They currently operate on local routes with frequent stops in downtown Minneapolis and its surrounding communities.

The decision to purchase the new hybrids was greatly influenced by the results of a University of Minnesota study aimed at improving fuel economy in diesel-electric hybrid buses, Wurzinger says. The “Superbus” study, led by mechanical engineering (ME) professor David Kittelson, included an energy audit of major accessory systems on a standard hybrid bus. The study was funded by Metro Transit, CTS, and the U of M’s Institute for Renewable Energy and the Environment (IREE).

Study findings indicated that up to half of the fuel consumed by hybrid buses is used to power accessory systems. According to the research team, powering these systems electrically could significantly improve fuel efficiency.

The new advanced hybrids do just that, using all-electric systems to power the heating, air conditioning, engine fans, power steering, and air compressor. These components improve fuel economy, reduce emissions, and allow the buses to be operated in electric-only mode for short periods.

Photo of Metro Transit diesel-electric bus
Photo: Metro Transit

One of the buses also has start/stop capabilities, which allow the engine to shut down at bus stops and traffic lights. “This reduces engine idle time while maintaining all other bus functions, including passenger comfort and safety features,” Wurzinger says.

Although the buses have been in service for only a short time, they are already showing promising increases in fuel economy, Wurzinger says. “We have also operated them consistently on electric power inside the bus garage, which helps keep the air clean in the building. This reduces the amount of ventilation required in cold weather, which means less energy is used to heat the building.”
Metro Transit has more than 130 hybrid buses in services--about 15% of its total fleet

Along with a standard hybrid bus and a conventional diesel transit bus, one of the advanced hybrids will be monitored and evaluated in a new study conducted by U of M researchers in collaboration with Metro Transit. The multidisciplinary research team includes Kittelson, ME associate professor Will Northrop, ME research associate Winthrop Watts, and applied economics associate professor Steven Taff.

As part of the study, funded by IREE, the team will collect real-world, on-the-road data from the three buses in all seasons on a variety of route types. The researchers then plan to compare the efficiency and emissions of the buses and make recommendations to Metro Transit about which configuration is the best for a given application. Data collected from the study will also allow Metro Transit to work with bus manufacturers to optimize bus performance.

“We believe the results will be useful in writing bus technical specifications and also in determining if a certain type of bus is best suited to a certain type of bus route,” Wurzinger says.

Ultimately, this information could be used to determine which buses to assign to which routes as well as which type of bus to purchase given fleet replacement or expansion requirements.

The project is scheduled for completion in 2015.

Reprinted from the CTS Catalyst, June 2013.

CTS Research Conference videos and presentations now available

If you weren’t able to attend the CTS Research Conference, or, if you simply want to check out presentations from other sessions, the videos of the keynote and luncheon speeches, as well as PPTs from most of the concurrent sessions, are now available on the CTS website. You won’t want to miss Minnesota Department of Health Commissioner Ehlinger’s tuneful take on the links between health and transportation and Elizabeth Deakin’s view of new ways to get around.

New video showcases Minnesota city and county stormwater management techniques

Earlier this week, the Minnesota Local Road Research Board released this new video showcasing best practices for local stormwater management. Although it’s primarily a training video for engineers and other public works professionals, non-transportation geeks might also enjoy learning about some of the interesting, innovative techniques being employed in cities and counties across the state.

Those who’d prefer not to watch the whole 14-minute video can skip ahead by clicking on these highlights:

  1. Woodbury’s stormwater ponds (1:52)
  2. Washington County’s bioretention gardens (2:56)
  3. “Green roof” bioretention method (4:02)
  4. Maplewood’s underground detention system (4:39)
  5. Greenway stormwater project in Minneapolis (6:03)
  6. Minnetonka’s hydrodynamic separator treatment system (7:47)
  7. Arden Hills’ infiltration (swales) system (8:26)
  8. Shoreview’s permeable pavements (9:52)
  9. Ramsey-Washington permeable pavement project (11:11)
  10. Tree boxes/trenches in Ramsey-Washington (12:06)

Overall, the video gives you an appreciation for the incredible amount of planning and work that goes into managing stormwater runoff — a task that’s critical to protecting the state’s waterways from pollution (but which many people no doubt take for granted). For those who want to learn more, the best management practices showcased here are examined in greater detail in a recent LRRB report, “Decision Tree for Stormwater BMPs,” which is available for free on the LRRB and MnDOT Research Sevices websites:

U of M transportation research highlights video

U of M transportation research highlights during 2012-2013 include a smartphone app for visually impaired pedestrians, pedestrian and bicyclist safety in roundabouts, methods for counting bike and pedestrian traffic on trails, and a filter that takes phosphorous out of storm water.