All posts by Shannon Fiecke

Marketing and Communications Manager, MnDOT Research Services

Research Drives Change At Rest Stops

In an effort to encourage more use of safety rest areas and reduce drowsy driving, the Minnesota Department of Transportation is bolstering amenities and plans to install new signage at select rest areas across the state.

Drowsy driving is conservatively estimated to cause at least 1,550 deaths nationwide each year and $12.5 billion in monetary damage.

Motorists would stop more frequently at rest areas if they knew what rest areas offered, according to market research completed in 2009.

MnDOT will design and install highway symbol signs to advertise the amenities at 13 rest areas in a pilot project funded by MnDOT’s Transportation Research Implementation Group.

“We are using this as a way to entice drivers to take a break, pull over and refresh before returning to the road,” said Robert Williams, MnDOT Safety Rest Area Program Manager and the project proponent.

Rest areas in Brainerd and Cass Lake, Minn., can now offer a tourism-related gift shop, thanks to a change in state law.
Rest areas in Brainerd and Cass Lake, Minn., can now offer a tourism-related gift shop, thanks to a change in law.

Amenities differ greatly between rest areas within the state, as well as across the country; this depends on when they were built and whether they are located on an interstate, state highway or toll road.

Older, smaller rest areas may only have a bathroom and picnic area, while newer facilities often have features such as children’s play areas, staffed travel counters and dog runs.

In the future, the state may consider new amenities such as gift shops, adult exercise equipment to rejuvenate motorists, electrical vehicle charging stations and perhaps even electrification stations to allow truck drivers to power their TV or refrigerator without idling their vehicle.

Research has found that as the spacing of rest areas increases beyond 30 miles, the number of drowsy driving crashes goes up exponentially, Williams said.

Each sign will advertise up to six amenities.
Each sign will advertise up to six amenities.

Proposed Signage

Symbols on each sign will identify up to six amenities, such as in the example above, which depicts an assisted restroom, gift shop, ticket sales, EV charging stations, childrens’ playlot and adult exercise equipment.

MnDOT will evaluate the pilot project to determine if the symbol signs are effective in communicating to travelers the amenities offered at individual rest areas and if the signs were a factor that encouraged them to stop.

If the two-year project goes well, the state may add similar signs to the remaining 39 Class I safety rest areas (those rest areas equipped with flush toilets).

Some of the signs will require a request to FHWA for experimentation.  The intent is to install the signs in the summer of 2015 at rest areas on northbound I-35, eastbound I-94, as well as at the Brainerd Lakes Area Welcome Center on Hwy. 371.

Rest Area Offerings Increase

Although travelers and state DOTs would often like to introduce new amenities, state and federal laws limit what states can offer.

Toll roads and highways built before 1960 (the Interstate era), mostly in the East Coast or Chicago area, have fewer federal restrictions than rest areas in Minnesota and may feature restaurants or convenience stores.

Changes to Minnesota state law in 2005 and recent changes to federal law in MAP-21 now allow limited commercial activities, such as tourism-related gift shops and ticket sales at rest areas. MnDOT and its partners have taken advantage of some of these changes at its visitor centers in Brainerd/Baxter and Cass Lake.

In addition, the state is exploring the concept of using rest areas as transit transfer facilities, where long-distance bus carriers and regional transit lines can exchange passengers.

These transit hubs would shorten travel times for long-distance travelers and allow the rest areas to serve multiple functions while providing a comfortable waiting area for passengers.

Rest areas
Pilot locations are circled.

Video: 3D Technology Enhances Underwater Bridge Inspection

A new technology that uses 3D-imaging sonar will enable MnDOT engineers to visualize the substructure of a bridge in a way they never have before.

Until now, MnDOT has relied on human divers and depth finders to identify problems beneath the water.

Divers are limited by what they can see and feel in murky waters, however, and depth finders can only look down, not around.

“With this new technology, we will be able to provide high resolution three-dimensional images of underwater areas, structures and objects to show what is occurring, regardless of water clarity,” said MnDOT Bridge Waterway Engineer Petra DeWall, who has received funding from MnDOT’s Transportation Research Innovation Group to purchase the equipment.

Video imagery from a sonar inspection of Minneapolis’ Third Avenue bridge is above.

Currently, MnDOT hires engineer divers to physically inspect about 500 bridges every five years. They look for cracked concrete, exposed reinforcement and other detrimental conditions.

Although divers can spot issues, they can’t always thoroughly assess the scope of a problem, such as the amount of sediment being washed out around a bridge pier, a problem called bridge scour.

It can also be difficult — or dangerous — for divers to venture down for an inspection.

This was the situation last winter with the Third Avenue Bridge in downtown Minneapolis, where the streambed has degraded around a bridge pier, causing erosion to the pier.

“The Third Avenue inspection was not totally detailed. We knew there was a void under the bridge, but it was very hard to visualize,” DeWall said.

Early ice build-up halted further inspection in November, so MnDOT asked 3D sonar scanner manufacturer Teledyne BlueView to scan the area as a demonstration of its equipment.

A video of the inspection is below:

Multiple holes were cut in the ice sheet to deploy the sonar, which provided an image of the bridge scour by emitting sound-waves that created a point cloud.

“It gives you a large data set of where the sound reaches and comes back to the equipment,” DeWall explained.

The 3D image provides a level of detail that will enable repair and construction contractors to make more accurate bids, saving MnDOT money on projects.

Although dive inspectors are also beginning to invest in this new technology, MnDOT wants its own equipment to perform quick assessments of troublesome spots without going through the lengthy contracting process.

The Federal Highway Administration is conducting a pooled fund study to see if the technology eliminates the need for dive inspectors all-together.

MnDOT also plans to use its 3D scanning sonar to inspect repair projects and assess bridge construction.

One of DeWall’s first goals is to take a scan of the Hastings bridge after construction is complete, which will provide a baseline scan that can be compared against future inspections. The old bridge has had problems with the loss of rocks at its piers. It is unclear if the rock just sinks or is washed away downstream. Monitoring will let MnDOT see what is happening over time.

“Inspection is just one part of it,” DeWall said of the sonar equipment. “The big interest in this project is coming from our construction folks.”

Post-Construction

Imagine building a new house and not being able to complete the final walk-through.

This is the situation that transportation departments face when they build a new bridge, due to the limitations of underwater inspections.

“With 3D technology, you can go back afterward and check to make sure things were done the way they were supposed to,” DeWall said.

DeWall wishes the state had the scanner many years ago when a bridge was built that required expensive correction.

A bridge construction crew left construction material behind under the water, which wasn’t discovered until the redirected water flow caused significant erosion to the bridge pier.

Divers picked up that something was going on during a routine inspection, but engineers still had to bring in depth finders to get a better look. Due to the water current, they were limited in how close they could get to the bridge pier, and turbulence crashed their boat against the pier, damaging the transducer.

Not only would this 3D technology have provided a more thorough assessment than the depth finder, it also could have captured the imagery from a safe distance away.

New test could help asphalt pavements survive winter intact

If there was ever a winter that demonstrated what cold weather can do to asphalt pavements, last one was it. But future winters may wreak less havoc on Minnesota roadways, thanks to a new asphalt mixture test in the final stages of evaluation by MnDOT’s Office of Materials and Road Research (OMRR).

Developed through a decade-long multi-state research project, the Disc-shaped Compact Tension (DCT) test evaluates the low-temperature performance of asphalt mixes. (See a video about the project that helped develop the DCT test below.)

For the first time, engineers will be able to predict how well a contractor’s proposed asphalt mix will hold up under harsh Minnesota winters.

“Performance testing is assuring that we’re getting what we’re paying for,” explained MnDOT Research Project Engineer Luke Johanneck.

Low-temperature cracking is the most prevalent form of distress found in asphalt pavements in cold climates. As the temperature drops, the pavement tries to shrink, creating cracks that allow water to seep in and eventually lead to pavement deterioration.

Until now, engineers have typically evaluated the individual components (such as amount of crushed aggregate and asphalt binder grade) and volumetric properties (such as air voids and asphalt content) of an asphalt mix, not how the final product performs in low temperature.

“It’s like baking a cake,” explained MnDOT Bituminous Engineer John Garrity. “Our current system says put in a half-cup of oil, two eggs and cake mix. Rather than just looking just at those individual components, taste the cake to see how good it is.”

Created by researchers at the University of Illinois, the DCT test applies tension to an asphalt mixture sample to determine its thermal fracture resistance. The test was determined to be the best of several methods looked at in another research study, conducted by the University of Minnesota with assistance from neighboring state universities.

The Disc-Shaped Compact Tension Test measures the fracture energy of asphalt  mixture lab or field specimens, which can be used in performance‐type specifications to control various  forms of cracking.
The test measures the fracture energy of asphalt mixture lab or field specimens, which can be used in performance specifications to control various forms of cracking.

The Office of Materials and Road Research is conducting pilot tests to become more familiar with the DCT test and to educate road contractors, who may eventually be required to use the test in Minnesota.

“This is very new to a lot of people that have been in the business for a long time,” Johanneck said.

Last summer, OMRR asked five contractors to submit asphalt mixes for testing. If a mix didn’t pass, the contractor was given suggestions for how to modify their recipe to better resist thermal cracking. This summer, OMRR plans to collect asphalt mixes from around the state to see how they measure up against a set of performance targets that were developed in the pooled fund study.

“We envision this at some point being part of our standard bid specifications,” Garrity said.

Those with a professional interest in the subject might be interested in a new video from MnDOT Research Services & Library (below) that demonstrates how to do the sample preparation for the DCT test.

Research Studies

Current DCT Test Implementation Project (2014) Pooling Our Research: Designing Asphalt Pavements That Resist Cracking at Low Temperatures (March 2013 Technical Summary) Synthesis of Performance Testing of Asphalt Concrete (September 2011) Investigation of Low Temperature Cracking in Asphalt Pavements National Pooled Fund Study 776 (2007 report)

Related Videos

Frost Damage in Pavement: Causes and Cures (full-length) Frost Damage in Pavement: Causes and Cures (short version)

High-Tech Inspections to Keep Minnesota’s Timber Bridges Safe

Across Minnesota, hundreds of wooden bridges are reaching the end of their lifespan, but counties don’t know which ones to repair and which ones to replace.

In 2010, a timber bridge partially collapsed in Nobles County, heightening concerns about the state of inspections statewide.

“A lot of it right now is just visual and sounding the wood – striking it with a hammer and interpreting dull or hollow sounds,” said MnDOT State Aid Bridge Engineer David Conkel.

Timber bridges are at a critical point in Minnesota, not only because of the sheer number built in the 1950s and 1960s, but because it’s difficult to judge their structural soundness without advanced equipment.

While current inspection methods adequately identify areas of advanced decay, they do a poor job of detecting early decay or internal deterioration, especially in the timber substructure.

MnDOT and the Local Road Research Board have partnered to develop better inspection and repair methods on behalf of Minnesota counties. Training will be held in May and June for county inspectors. [Register here]

The most troublesome area of decay on a timber bridge are in the pilings, which usually have contact with the water. The drying and wetting of the water causes rot to form.
The most troublesome area of decay on a timber bridge are in the pilings, which usually have contact with the water. The drying and wetting of the water causes rot to form.

Identifying internal deterioration early is essential because once significant rot is noted, a timber bridge can slip into a severe condition within just two to three years.

Early bridge makers treated timber bridge elements with creosote to prevent decay from fungi and insect damage. However, because it was typically applied to the shell, a good external condition may hide severe internal deterioration.

“The timber bridge elements typically decay from the inside out due to the lack of preservative in the center of the timber,” explained Matt Hemmila, St. Louis County Bridge Engineer. “The outside will look okay, but the inside may be highly deteriorated.”

Better Inspection

Resistance microdrills and stress wave timers are two proven inspection tools that counties can use to see past the surface of a timber bridge and identify the actual amount and area of internal rot. But Minnesota counties have lacked this equipment and the training.

“These tools will enable us to identify the bad bridges before the decay shows up visually– but it will also tell us which bridges are still good so we can allocate the funds we have to replace the worst bridges,” Hemmila said.

A stress wave timer (video above) locates bad areas on a bridge by using probes to measure the time it takes for sound to travel through the material. A decayed piling will have a time that is more than double that of a sound piling.

A resistance microdrill (video below) can then be used to determine how much good wood is left in a piling or timber element by drilling a bit into the wood and measuring the resistance.

MnDOT and the LRRB are developing a customized inspection manual and standardized inspection protocols, which can be integrated into the state’s bridge data management software.

“Good inspections can catch potential problems early and possibly avoid emergency closures or load postings,” Conkel said. “It enhances safety while also helping stretch available funding for bridge repair and replacement.”

Baby Boomers

Minnesota has one of the highest concentrations of timber bridges in the country — 1,600 (down from 1,970 in 2001), more than half built before 1971.

These bridges typically start experiencing issues in their substructure when they reach 40 to 60 years old, with decay usually occurring where the piling meets the ground or water line – a perfect environment of air and moisture for rot to thrive and propagate.

Unfortunately, some bridges were unwisely built on the pilings of former bridges.

“Well-maintained, well-designed and well-treated bridges can last a long time, equivalent to other materials,” said Brian Brashaw, director of Wood Materials and Manufacturing Program at the University of Minnesota-Duluth.

Age of Minnesota's Timber BridgesBecause bridge engineers have been unable to fully assess the internal cross-sections of timber bridges, they have been very conservative when assessing timber bridges, Brashaw said, resulting in load limit reductions and bridge replacements.

“The use of advanced techniques will take the guess work out of the equation, allowing for better decision-making on which bridges need repair or replacement now,” Brashaw said.

With no formal national or state guidance, MnDOT and the Local Road Research Board undertook a research project to identify state-of-the-art inspection practices and marry those techniques with the needs of Minnesota county engineers.

“We don’t have enough money to just replace all the timber bridges, so we want to provide county engineers with more advanced inspection tools so they can determine how much decay there is in the piling, and other susceptible areas,” Conkel said.

A second LRRB project, led by Iowa State University, is advancing the development of cost-effective repair techniques that counties can use to lengthen a bridge’s service life.

“We can’t build them fast enough, so we have to find a way to make them last longer so we can catch up,” Hemmila said.

Upcoming courses (see flyer) *

May 14: SE Minnesota – Register Here for Welch, MN

May 15: SW Minnesota – Register Here for Windom, MN

June 23: NE Minnesota – Register Here for Aitkin, MN

June 24: NW Minnesota – Register Here for Bemidji, MN

 

*All classes 9:00 a.m. to 3:30 p.m.

Deicing treatments tested at Valleyfair, Canterbury Park

Excalibur and the High Roller may be closed for the season, but Valleyfair Amusement Park still has one attraction open for the season: a driving track for Minnesota snowplow drivers.

MnDOT-funded researchers are studying the effects of weather and vehicle traffic on different deicing treatments in the parking lots of Valleyfair and Canterbury Park in Shakopee, Minn.

It’s been a busy winter, but each week MnDOT Metro District snowplow drivers make one last stop before heading home, to apply different combinations of salt and anti-icing chemicals to nine 1,000-foot driving lanes. They also drive over each lane multiple times to test the effect of traffic.

“We’re running trucks up to 30 miles per hour with different speeds, wind conditions, traffic conditions and pre-wetting chemicals,” said Steve Druschel, a researcher with the Minnesota State University, Mankato. “Each lane is its own experimental unit.”

Professor Steve Druschel speaks with MnDOT snowplow driver John Hokkanen.
Professor Steve Druschel speaks with MnDOT snowplow driver John Hokkanen.

Professor Druschel’s students will review more than 17,000 photos from time-lapsed cameras to document how the snow melted in each experimental run.

“The influence of factors like pavement type and age, traffic volume, truck proportion, weather conditions and sun presence will be assessed to evaluate which techniques have special advantages for certain situations or roadways,” said Maintenance Research and Training Engineer Tom Peters.

In 2010, Druschel tested 25 anti-icing compounds in 1,500 different combinations in a laboratory to study the effectiveness of different deicers.

“Public work superintendents commented, ‘Great work. It looks good, except it’s all in the lab. Beakers aren’t what people drive on,’ ” Druschel said. “So we’re taking it from the two-inch ice cup to the real world in phase two of this study.”

With rock salt prices quadrupled, finding the most cost-effective methods of treatment is important.

This latest research will help determine the best times for applying anti-icing treatments and examine whether certain chemicals — such as a pre-storm liquid treatment that costs twice as much — melt enough snow to be worth the extra cost.

Test runs in Shakopee are strictly experimental, but in Mankato students are analyzing how real-world salting treatments are working on the North Star Bridge.

An article in the Mankato Free Press tells how Druschel’s team is collecting road melt runoff and documenting bridge traffic. (Big trucks, for instance, squeeze more water out of the snow.)

MnDOT snowplow driver John Hokkanen makes a test run at the research site at Canterbury Park.  (Photo by Nick Busse)
MnDOT snowplow driver John Hokkanen makes a test run at the research site at Canterbury Park. (Photo by Nick Busse)

Students plan to use time-lapsed photos, along with weather data and snowplow records, to determine what chemical treatments worked best – and when.

With the multi-pronged research project, Druschel hopes to put definitiveness to what some snowplow drivers have already tried in the field.

“The key to it is not so much that we’re so smart and we have a better idea or are inventing something new,” he said. “We’re just trying to enhance what they are already doing.”

Helpful resources

Salt Brine Blending to Optimize Deicing and Anti-Icing Performance –Technical Summary (PDF, 1 MB, 2 pages) and Final Report (PDF, 11 MB, 151 pages) (previous study) 

 

Smartphone app guides blind pedestrians through work zones (updated)

Each year, approximately 17 percent of road construction work zone fatalities nationwide are pedestrians.

At special risk are the visually impaired, who rely on walking and public transportation to get around.

A major challenge  for them is crossing the street — which is even more difficult if an intersection is torn up.

MnDOT has invested significant effort to accommodate pedestrians, particularly those with disabilities, in temporary traffic control situations. This includes requiring temporary curb ramps and alternative routes when a sidewalk is closed.

Researchers, funded by MnDOT, have now developed a cell phone application to guide blind pedestrians around a work-zone.

Illustration of Bluetooth beaconplacement at decision points around a work zone.
Illustration of Bluetooth beacon placement at decision points around a work zone.

Building on previous work to provide geometric and signal timing information to visually impaired pedestrians at signalized intersections, the smartphone-based navigation system alerts users to upcoming work zones and describes how to navigate such intersections safely.

The smartphone application uses GPS and Bluetooth technologies to determine a user’s location. Once a work zone is detected, the smartphone vibrates and announces a corresponding audible message. The user can tap the smartphone to repeat the message, if needed.

The federal government strongly encourages states to provide either audible warnings or tactile maps at work zones where visually impaired pedestrians are expected to be impacted.

“The smartphone application is a step in that direction,” said MnDOT technical liaison Ken Johnson. “It’s a way to see if this type of way-finding device would work.”

Since smartphone use is still limited, the state is also interested in special equipment that could relay the audible warnings at affected work zones.

“However, smartphone use is increasing in the general population, as well as with persons with disabilities, and there will likely be a day when it will be rare to not have a smartphone and this tool could meet road agency needs,” Johnson said.

Before developing the smartphone application, researchers surveyed 10 visually impaired people about their experiences at work zones and what types of information would be helpful in bypass or routing instructions.

The University of Minnesota research team, led by Chen-Fu Liao, tested the smartphone application by attaching four Bluetooth beacons to light posts near a construction site in St. Paul.

Additional research is now needed to conduct experiments with visually impaired users and evaluate system reliability and usefulness.

*Update 4/29/2014: Check out this story from KSTP on the app.

More information

Development of a Navigation System Using Smartphone and Bluetooth Technologies to Help the Visually Impaired Navigate Work Zones Safely — Final Report (PDF, 1 MB, 86 pages)

Flume research simulates Red River flooding to test road protections

Flooding in the Red River Valley is an almost annual occurrence, and the cost to roads, property and lives is huge.

Highway 1 gets torn up year after year, only to be rebuilt in time for next year’s flood, joke residents in the little town of Oslo, which becomes an island whenever the roads close.

While not much can be done to prevent swollen farm fields from overflowing, what if a road embankment itself could be bolstered to prevent physical damage to the underlying structure of the road?

“We can’t just raise the road because it would create backwater upstream,” explained JT Anderson, Assistant District 2 Engineer. “Our best bet is to let the water over-top the road and try to protect the road when it does.”

Researchers have built a flume inside the University of Minnesota’s St. Anthony Falls Laboratory to test six methods of embankment protection specific to the needs of towns like Oslo.

“It is not uncommon for one over-topping site to have a half-mile long stretch of road being damaged,” said university research engineer Craig Taylor. “One road being protected should cover the cost of the study and the cost of deploying the erosion control product for that road.”

Nationally, research of this kind has mostly been restricted to high-intensity flooding.

“Those really high-depth, short duration events, you can only protect an embankment with concrete and boulders,” Taylor said. “With longer duration, low-depth floods, we may be able to protect roads with soft armoring, like reinforced vegetation.”

The damage in northern Minnesota has been the worst on east-west roads, where the river flow runs perpendicular to the center of the road, causing the road to act like a dam and the water to jump at the edges.

“It eventually eats through that road embankment and makes the road collapse,” Anderson explained.

Researchers will examine how a cross-section of a road holds up under various erosion control methods at different levels and speeds of water-flow.

The damage from flooding was less in 2010 after engineers added rocks and vegetation to the side of Highway 9, near Ada.
The damage from flooding was less in 2010 after engineers added rocks to the side of Highway 9, near Ada, Minn.

One test will be to slow the flow of water by covering the road shoulder with a rubberized membrane and temporary water-filled tubes.

Permanent schemes — such as turf reinforcement mats and rocks — will also be tested.

“These methods have been deployed in the field, but you never really know under which conditions they survived or failed,” Taylor said.

In the Red River Valley, MnDOT engineers have tried a combination of vegetation and boulders, as well as concrete blocks covered with topsoil, to protect highways. Flattening a slope is another option.

“I expect that a single erosion protection technique will not cover every situation our road embankments may be exposed to at any given location,” Anderson said.  “Rather, I expect we would look at using several different techniques in concert to develop an effective erosion protection system for the expected velocities.”

Warning system could protect drivers from traffic ‘shock waves’

Two summers ago, the Minnesota Department of Transportation installed electronic message boards on parts of Interstates 35W and 94 to help warn drivers of crashes and to recommend speed levels during periods of high congestion.

Now, MnDOT would like to use the devices — officially known as Intelligent Lane Control Signs (ILCS) — to advise drivers of sudden stopping or slowing of traffic.  Many crashes occur when drivers cannot react quickly enough to these changes.

The Minnesota Traffic Observatory (shown in the feature photo above) is developing a warning system to detect such problematic traffic patterns and issue automatic advisories to drivers.

Shock waves on I-94

A section of I-94 in downtown Minneapolis, where southbound I-35W and westbound I-94 converge, may have the highest crash rate in the state.

As shown in the video above, vehicles constantly slow down and speed up here during rush hour, which causes a ripple effect called “shock waves.”

“There’s a crash every two days,” said University of Minnesota researcher John Hourdos, whose students watched over a year’s worth of video footage to document every accident and near accident. “They’re not severe crashes — no one has died for as long as I can remember, and most happen at slow speeds — but they cause a lot of delays for the traveling public.”

When statistics were still being kept, this section of I-94 had the highest number of accidents in the state, with approximately 150 crashes and 400 near crashes observed in 2003.

Researchers developed a program 10 years ago to detect “shock wave” patterns in the traffic, but they couldn’t develop a practical solution until the state invested in electronic message boards.

The University of Minnesota deployed cameras and sensors on three downtown rooftops in 2002 to observe traffic patterns.  They provide seamless coverage of the entire area, allowing researchers to watch vehicles from the moment they enter and exit the area. MnDOT has added additional cameras and detectors to watch over this roadway section. For the past year, the combined efforts of MnDOT and the university have provided data from 26 cameras and 12 traffic sensors for the two-mile section that includes the high-crash frequency location.

Thanks to the message boards, Hourdos and his team can now create an automated system to warn drivers when conditions for “shock waves” are greatest, using an algorithm he developed in the previous study.

Traffic monitoring equipment on a rooftop
From downtown Minneapolis rooftops, traffic monitoring equipment detect shockwaves on Interstate 94.

Crosstown interchange 

A newer problem that researchers hope to tackle is the lineup of cars on I-35W southbound during rush hour at the newly reconstructed Crosstown interchange.

Although two lanes of traffic are provided for eastbound Highway 62 at the I-35W/62 split, these vehicles must later converge into one lane, due to the Portland Avenue exit. This causes a back-up on the 62 ramp that stretches back to 35W.

Hourdos said developing an algorithm to detect these queues is a different problem than what goes on with I-94, since there is a constant stoppage of cars and no rolling shockwaves.

“Combining the two methodologies will form a more robust solution and a single implementable driver warning system,” Hourdos said.

Researchers might target other problems areas should the state  install additional ILCS message boards elsewhere in the Twin Cities.

Value capture alternative finance model tested on Highway 610

Those who use the roads in Minnesota are generally those who pay for them — through gasoline and vehicle taxes.

But motorists aren’t the only ones who benefit when a new interchange is built or a highway is improved. Home and business values along the corridor go up and the price of undeveloped land can skyrocket.

With highway funds strapped, a new method of funding road expansion, called “real estate value capture,” is garnering attention.

This emerging technique strives to identify beneficiaries of transportation improvements beyond just the highway user, so they provide their fair share of the costs — a concept not dissimilar from residential street assessment.

For instance, a local government might dedicate the additional property tax revenue generated due to a new highway to offset some construction costs, or collect fees on land that is developed near an interchange.

However, value capture is a relatively new technique that has been used primarily for transit projects. To be considered for roads or bridges, questions need to be addressed about potential revenue, impacts and public acceptability.

In a new case study, researchers use a long-delayed planned extension of Highway 610 in Maple Grove to model the impact of a completed highway on nearby property values, and, for the first time, quantify the potential revenues from several value capture strategies.

With properties near new highway exits worth an additional $65,450 more per acre, researchers calculated that $37.1 million in revenue could be generated through assessments on existing development and impact fees for future development.

Other strategies explored include tax-increment financing and private-public development of undeveloped parcels, in which revenue generated by that development is split.

“This research demonstrates a way to estimate the value of transportation improvement and to communicate that to the public,” said principal investigator Jerry Zhao, an associate professor of public administration at the University of Minnesota’s Humphrey School of Public Affairs.

This map projects the anticipated increase in estimated market value (EMV Change) of parcels near Highway 610 that will result from completion of the highway and construction of exits at the two locations marked in purple. The impacted parcels are currently vacant, farmland or residential.
This map projects the anticipated increase in estimated market value (EMV Change) of parcels near Highway 610 that will result from completion of the highway and construction of exits at the two locations marked in purple. The impacted parcels are currently vacant, farmland or residential.
Study links:
    • Real Estate Value Capture: An Emerging Strategy to Pay for New Transportation Infrastructure – Technical Summary (PDF, 1 MB, 2 pages);  Final Report (PDF, 5 MB, 36 pages).

Three common questions about bike lanes, answered

If you’ve ever driven near a bike lane and not known what to do, you’re not alone.

A forthcoming video from the Local Road Research Board seeks to answer common questions about on-street bike lanes and help bicyclists and motorists better understand the rules. The video is due to be released this spring; in the meantime, we thought we’d give you a sneak preview by addressing three common misconceptions about bike lane rules and safety. 

1) Are bicyclists required to use a bike lane, when present?

No. Although bike lanes usually provide the smoothest, safest and most efficient method of transportation — for everybody — they are not required to use them. They are allowed to ride outside bike lanes to make turns or avoid debris, and they still have the option of using an adjacent trail where available.

2) Are vehicles allowed to enter bike lanes?

Yes, but only to park or turn onto a driveway or street. Motorists should treat bike lanes like any other lane of traffic and yield to approaching bicyclists, but they do have the right to enter bike lanes when turning.

3) Do bicyclists have to follow the same rules as motorists?

Yes. Bicycles are considered vehicles under Minnesota state law and have the same rights and responsibilities. Cyclists are required to obey stop signs and signal their turns, just like motorists.

A federal project funded 75 miles of new bike lanes in four communities, including Minneapolis.
A recent federal project funded 75 miles of new bike lanes in four communities, including the city of Minneapolis. Biking in these areas increased 50 percent; 7,700 fewer tons of carbon dioxide were emitted and gas consumption was reduced by 1.2 million gallons. (Source)

Watch for the LRRB’s new bike safety video on Crossroads this spring. In the meantime, check out MnDOT’s tips on bicycle safety.