Tag Archives: Minnesota transportation

MnDOT leaders highlight TRB benefits at forum

As a graduate student 35 years ago, Bill Gardner attended his first Transportation Research Board Annual Meeting, and he still remembers the thrill.

“I felt like a kid in a candy shop,” recalled Gardner, who heads MnDOT’s Office of Freight and Commercial Vehicle Operations. “I was amazed at the diversity of topics… You could find people who have devoted their whole lives to the hazards of rural mailboxes.”

Gardner and other MnDOT leaders on Tuesday recounted their experiences from this year’s annual meeting — which drew more than 10,000 participants — and encouraged other MnDOT staff to get involved in the organization, which helps set national transportation guidelines, oversees collaborative research and facilitates the exchange of information.

“We’re heavily involved, but I think we could be more involved,” said Modal Planning and Program Management Director Tim Henkel, who has been part of the TRB for more than 20 years.

Henkel said TRB involvement benefits MnDOT in several ways, including access to national and international experts, the ability to keep tabs on hot-button issues and having a seat at the table in decision-making.

“It makes us a more enlightened and informed decision-making body,” Henkel said.

MnDOT has more than 60 staff serving on 114 TRB committees and contributes $125,000 annually to the TRB core program, gaining $127 in collaborative research for every $1 it contributes.

“It’s a very intense and very busy experience," said Chief MnDOT Engineer Deputy Commissioner and Chief Engineer Sue Mulvihill, who displayed the thick program book and other materials from this year’s Transportation Research Board Annual Meeting.
“It’s a very intense and very busy experience,” said MnDOT Deputy Commissioner and Chief Engineer Sue Mulvihill, who displayed the thick program book and other materials from this year’s Transportation Research Board Annual Meeting.

As part of a series of staff forums they will hold throughout the year, MnDOT leaders chose to highlight the TRB, which met in January. (MnDOT employees interested in attending next year or getting involved in the TRB should speak with their supervisor.)

State Bridge Engineer Nancy Daubenberger, who serves on a TRB subcommittee and gave a presentation at the recent conference, said it helps to hear about the challenges faced by agencies around the country.

Assistant Engineering Services Division Director Amr Jabr, who attended for the first time, said he used a smartphone app just to decide which of the approximately 3,500 sessions he wanted to attend.

“I thought it was an extremely good experience,” he said. “I picked up a lot of information and made a lot of new contacts.”

Flume research simulates Red River flooding to test road protections

Flooding in the Red River Valley is an almost annual occurrence, and the cost to roads, property and lives is huge.

Highway 1 gets torn up year after year, only to be rebuilt in time for next year’s flood, joke residents in the little town of Oslo, which becomes an island whenever the roads close.

While not much can be done to prevent swollen farm fields from overflowing, what if a road embankment itself could be bolstered to prevent physical damage to the underlying structure of the road?

“We can’t just raise the road because it would create backwater upstream,” explained JT Anderson, Assistant District 2 Engineer. “Our best bet is to let the water over-top the road and try to protect the road when it does.”

Researchers have built a flume inside the University of Minnesota’s St. Anthony Falls Laboratory to test six methods of embankment protection specific to the needs of towns like Oslo.

“It is not uncommon for one over-topping site to have a half-mile long stretch of road being damaged,” said university research engineer Craig Taylor. “One road being protected should cover the cost of the study and the cost of deploying the erosion control product for that road.”

Nationally, research of this kind has mostly been restricted to high-intensity flooding.

“Those really high-depth, short duration events, you can only protect an embankment with concrete and boulders,” Taylor said. “With longer duration, low-depth floods, we may be able to protect roads with soft armoring, like reinforced vegetation.”

The damage in northern Minnesota has been the worst on east-west roads, where the river flow runs perpendicular to the center of the road, causing the road to act like a dam and the water to jump at the edges.

“It eventually eats through that road embankment and makes the road collapse,” Anderson explained.

Researchers will examine how a cross-section of a road holds up under various erosion control methods at different levels and speeds of water-flow.

The damage from flooding was less in 2010 after engineers added rocks and vegetation to the side of Highway 9, near Ada.
The damage from flooding was less in 2010 after engineers added rocks to the side of Highway 9, near Ada, Minn.

One test will be to slow the flow of water by covering the road shoulder with a rubberized membrane and temporary water-filled tubes.

Permanent schemes — such as turf reinforcement mats and rocks — will also be tested.

“These methods have been deployed in the field, but you never really know under which conditions they survived or failed,” Taylor said.

In the Red River Valley, MnDOT engineers have tried a combination of vegetation and boulders, as well as concrete blocks covered with topsoil, to protect highways. Flattening a slope is another option.

“I expect that a single erosion protection technique will not cover every situation our road embankments may be exposed to at any given location,” Anderson said.  “Rather, I expect we would look at using several different techniques in concert to develop an effective erosion protection system for the expected velocities.”

Warning system could protect drivers from traffic ‘shock waves’

Two summers ago, the Minnesota Department of Transportation installed electronic message boards on parts of Interstates 35W and 94 to help warn drivers of crashes and to recommend speed levels during periods of high congestion.

Now, MnDOT would like to use the devices — officially known as Intelligent Lane Control Signs (ILCS) — to advise drivers of sudden stopping or slowing of traffic.  Many crashes occur when drivers cannot react quickly enough to these changes.

The Minnesota Traffic Observatory (shown in the feature photo above) is developing a warning system to detect such problematic traffic patterns and issue automatic advisories to drivers.

Shock waves on I-94

A section of I-94 in downtown Minneapolis, where southbound I-35W and westbound I-94 converge, may have the highest crash rate in the state.

As shown in the video above, vehicles constantly slow down and speed up here during rush hour, which causes a ripple effect called “shock waves.”

“There’s a crash every two days,” said University of Minnesota researcher John Hourdos, whose students watched over a year’s worth of video footage to document every accident and near accident. “They’re not severe crashes — no one has died for as long as I can remember, and most happen at slow speeds — but they cause a lot of delays for the traveling public.”

When statistics were still being kept, this section of I-94 had the highest number of accidents in the state, with approximately 150 crashes and 400 near crashes observed in 2003.

Researchers developed a program 10 years ago to detect “shock wave” patterns in the traffic, but they couldn’t develop a practical solution until the state invested in electronic message boards.

The University of Minnesota deployed cameras and sensors on three downtown rooftops in 2002 to observe traffic patterns.  They provide seamless coverage of the entire area, allowing researchers to watch vehicles from the moment they enter and exit the area. MnDOT has added additional cameras and detectors to watch over this roadway section. For the past year, the combined efforts of MnDOT and the university have provided data from 26 cameras and 12 traffic sensors for the two-mile section that includes the high-crash frequency location.

Thanks to the message boards, Hourdos and his team can now create an automated system to warn drivers when conditions for “shock waves” are greatest, using an algorithm he developed in the previous study.

Traffic monitoring equipment on a rooftop
From downtown Minneapolis rooftops, traffic monitoring equipment detect shockwaves on Interstate 94.

Crosstown interchange 

A newer problem that researchers hope to tackle is the lineup of cars on I-35W southbound during rush hour at the newly reconstructed Crosstown interchange.

Although two lanes of traffic are provided for eastbound Highway 62 at the I-35W/62 split, these vehicles must later converge into one lane, due to the Portland Avenue exit. This causes a back-up on the 62 ramp that stretches back to 35W.

Hourdos said developing an algorithm to detect these queues is a different problem than what goes on with I-94, since there is a constant stoppage of cars and no rolling shockwaves.

“Combining the two methodologies will form a more robust solution and a single implementable driver warning system,” Hourdos said.

Researchers might target other problems areas should the state  install additional ILCS message boards elsewhere in the Twin Cities.

Complete Streets guide showcases best practices, success stories

A new guidebook offers Minnesota cities practical advice for making their streets more accessible to all users.

Complete Streets guidebookComplete Streets from Policy to Project shares insights and examples from 11 communities across the country, including Albert Lea, Fargo-Moorhead, Hennepin County and Rochester, that have successfully implemented the strategies of Complete Streets — a holistic approach to transportation planning that considers all modes of traffic (rail, transit, pedestrian, motor vehicle, bicycle, etc.).

While many sources offer guidance for implementing Complete Streets, they typically only provide general information or come from an advocacy group stressing one transportation mode or another.

The Minnesota Department of Transportation wanted to collect case studies from practitioners and develop recommendations for best practices that are applicable to the unique circumstances, challenges and opportunities of Minnesota communities.

The book highlights six best practices areas: framing and positioning, institutionalizing, analysis and evaluation, project delivery and construction, promotion and education, and funding.

The research makes it clear that there is no one-size-fits-all approach to Complete Streets that will work for all communities, so any approach must be tailored to a community’s unique challenges and opportunities.

MnDOT requires the principles of “Complete Streets” to be considered in all phases of transportation planning, and more and more cities across the state are adopting similar policies.

This practitioner-oriented guidebook was co-funded by MnDOT and the Local Road Research Board.

“This was a very important step in building knowledge for MnDOT and other Minnesota entities,” said Scott Bradley, director of MnDOT Context Sensitive Solutions. “It takes us beyond general  information that doesn’t  necessarily translate to the  challenges and opportunities we face in the state.”

The intersection of 9th Street and Jackson Street is an example of how the city of Dubuque, Iowa accommodated bike, pedestrian and vehicular traffic, while providing room for large trucks to load and unload at docks.

Related resources

Complete Streets from Policy to Project  – New (PDF, 19 MB, 156 pages)

Complete Streets Implementation Resource Guide for Minnesota Local Agencies – Released February 2013 (PDF, 17 MB, 54 pages)

Webinar recording of project overview/research findings

Webinar recording of panel discussion

Helpful websites

Minnesota Complete Streets Coalition

MnDOT’s Complete Streets website

Three common questions about bike lanes, answered

If you’ve ever driven near a bike lane and not known what to do, you’re not alone.

A forthcoming video from the Local Road Research Board seeks to answer common questions about on-street bike lanes and help bicyclists and motorists better understand the rules. The video is due to be released this spring; in the meantime, we thought we’d give you a sneak preview by addressing three common misconceptions about bike lane rules and safety. 

1) Are bicyclists required to use a bike lane, when present?

No. Although bike lanes usually provide the smoothest, safest and most efficient method of transportation — for everybody — they are not required to use them. They are allowed to ride outside bike lanes to make turns or avoid debris, and they still have the option of using an adjacent trail where available.

2) Are vehicles allowed to enter bike lanes?

Yes, but only to park or turn onto a driveway or street. Motorists should treat bike lanes like any other lane of traffic and yield to approaching bicyclists, but they do have the right to enter bike lanes when turning.

3) Do bicyclists have to follow the same rules as motorists?

Yes. Bicycles are considered vehicles under Minnesota state law and have the same rights and responsibilities. Cyclists are required to obey stop signs and signal their turns, just like motorists.

A federal project funded 75 miles of new bike lanes in four communities, including Minneapolis.
A recent federal project funded 75 miles of new bike lanes in four communities, including the city of Minneapolis. Biking in these areas increased 50 percent; 7,700 fewer tons of carbon dioxide were emitted and gas consumption was reduced by 1.2 million gallons. (Source)

Watch for the LRRB’s new bike safety video on Crossroads this spring. In the meantime, check out MnDOT’s tips on bicycle safety.

Innovative pavement textures reduce noise, improve fuel economy

What if something as simple as changing the texture of the pavements we drive on could not only increase safety, but also reduce noise pollution and boost our vehicles’ fuel economy?

It’s possible, according to the latest research from MnROAD, the state’s one-of-a-kind pavement research facility. In a new report, investigators detail how quieter pavement textures, such as those applied by grinding grooves into pavements with diamond-coated saw blades (see the photo above), may also reduce rolling resistance — the force that resists a tire as it moves across the pavement’s surface.

The potential benefits to the public are significant. A 10-percent reduction in rolling resistance could reduce the U.S. public’s fuel consumption by 2–3 percent, eliminate up to $12.5 billion in fuel costs each year (as well as cutting carbon emissions). Add on the cost savings from reducing noise pollution (building noise barriers along highways can cost as much as $3 million per mile), and it’s clearly a win-win situation.

In the study, researchers used an innovative line-laser profiler to develop three-dimensional representations of test pavement surface textures. They then investigated the relationship between these surface characteristics and data on rolling resistance that was collected during a 2011 study using a special test trailer developed by researchers in Poland. This year, the same trailer will be used to conduct a second round of rolling resistance measurements at MnROAD.

The research is related to an ongoing pooled-fund study on concrete pavement surface characteristics. The goal is to produce data that will allow MnDOT to identify ideal ranges for surface characteristics that improve pavements’ quietness and ride quality while keeping them safe and durable.

Learn more
Researchers relied on rolling resistance data from a study conducted in 2011 with a test trailer developed by the Technical University of Gdańsk, Poland. This was the first time such measurements were taken in the United States.
Researchers relied on rolling resistance data from a study conducted in 2011 with a test trailer developed by the Technical University of Gdańsk, Poland. This was the first time such measurements were taken in the United States.

MnROAD earns concrete pavement association award

Staff from MnROAD, the Minnesota Department of Transportation’s cold weather road research facility in Albertville, Minn., were presented with the Marlin J. Knutson Award for Technical Achievement by the American Concrete Pavement Association in December.

The award cites the facility’s well-deserved reputation for being a place where both agency and industry ideas are put to the test. This award was presented as a tribute to the agency’s commitment to learning and putting ideas into practice.

The Marlin J. Knutson Award for Technical Achievement is presented to an individual or group who has made significant contributions to advance the development and implementation of technical innovations and best practices in the design and construction of concrete pavements.

(far right) Gerald Voigt, ACPA president and CEO, presented MnDOT with the Marlin J. Knutson Award for Technical Achievement during a ceremony in December. Receiving the award are (from left) Luke Johanneck, Bernard Izevbekhai, Roger Olson, Tom Burnham, Glenn Engstrom, Maureen Jensen and Sue Mulvihill. (Photo courtesy of the ACPA)
(Far right) Gerald Voigt, ACPA president and CEO, presented MnDOT with the Marlin J. Knutson Award for Technical Achievement. Receiving the award are (from left) Luke Johanneck, Bernard Izevbekhai, Roger Olson, Tom Burnham, Glenn Engstrom, Maureen Jensen and Sue Mulvihill. (Photo courtesy of the ACPA)

“MnROAD is helping to make roads last longer, perform better, cost less, construct faster, and have minimal impact on the environment,” said Gerald Voigt, ACPA president and CEO. “It is a model for other agencies to follow.”

MnROAD is a pavement test track initially constructed between 1991-1993. It uses various research materials and pavements and finds ways to make roads last longer, perform better, cost less to build and maintain, be built faster and have minimal impact on the environment. MnROAD consists of two unique road segments located next to Interstate 94.

Staff from the MnROAD facility in Albertville were recognized during the ACPA’s Distinguished Service and Recognition Awards ceremony in December. (Photo by David Gonzalez)
Staff from the MnROAD facility in Albertville were recognized during the ACPA’s Distinguished Service and Recognition Awards ceremony in December. (Photo by David Gonzalez)

This article, authored by Rich Kemp, originally appeared in Newsline, MnDOT’s employee newsletter.