Tag Archives: inspection

Using History to Predict Bridge Deck Deterioration

Just how long will it be before a bridge deck needs to be rehabilitated?  Why not look to history to find out?

Researchers have put several decades of MnDOT bridge inspection records to good use by analyzing old bridge deck condition reports to calculate how quickly similar bridge decks will deteriorate.

MnDOT inspects bridges regularly, but had never used this historical data to help determine the rate of bridge deck deterioration and what factors influence it.

“We’re always trying to improve the timing of bridge deck repair projects and improve our understanding of what contributors affect the way our bridge decks deteriorate,” said Dustin Thomas, MnDOT’s South Region Bridge Construction Engineer.

Data-Crunching

From their analysis, researchers created deterioration tables that can be used to better predict the timing and costs of repairs and maintenance.

Researchers looked at the inspection history and construction details of 2,601 bridges to determine the impact of factors such as type of deck reinforcement, depth of reinforcement below the driving surface, traffic levels and bridge location.

Using the inspection data, researchers developed curves that show how long a bridge deck is likely to stay at a given condition before dropping to the next. They developed separate curves for each variable that had a significant impact on deck deterioration rates.

What They Found

Several factors were found to have a notable impact on how quickly bridge decks deteriorate:

  • Decks without epoxy-coated bars built between 1975 and 1989 deteriorate more quickly than other bridge decks.
  • Bridges with less traffic showed slightly slower rates of deterioration than highly traveled bridges.
  • Metro area bridges drop to a condition code of 7 (good) more quickly than bridges in other parts of the state. This may be due to increased chemical deicer usage or because maintenance activities like crack-sealing are more likely to be delayed on larger metro bridges  because of the difficulty accessing middle lanes.
  • When a new deck is installed on an existing bridge, the deck performs like a brand-new bridge and so MnDOT should use the deterioration table for the re-decking year, rather than the year the bridge was originally constructed.

MnDOT plans to incorporate future bridge inspections into the dataset to enhance the predictive value of the deterioration tables.

Related Resources

The impact of overlays on bridge deck deterioration in Minnesota was not clear, but redecked bridges were found to perform similarly as brand-new decks.

Video: 3D Technology Enhances Underwater Bridge Inspection

A new technology that uses 3D-imaging sonar will enable MnDOT engineers to visualize the substructure of a bridge in a way they never have before.

Until now, MnDOT has relied on human divers and depth finders to identify problems beneath the water.

Divers are limited by what they can see and feel in murky waters, however, and depth finders can only look down, not around.

“With this new technology, we will be able to provide high resolution three-dimensional images of underwater areas, structures and objects to show what is occurring, regardless of water clarity,” said MnDOT Bridge Waterway Engineer Petra DeWall, who has received funding from MnDOT’s Transportation Research Innovation Group to purchase the equipment.

Video imagery from a sonar inspection of Minneapolis’ Third Avenue bridge is above.

Currently, MnDOT hires engineer divers to physically inspect about 500 bridges every five years. They look for cracked concrete, exposed reinforcement and other detrimental conditions.

Although divers can spot issues, they can’t always thoroughly assess the scope of a problem, such as the amount of sediment being washed out around a bridge pier, a problem called bridge scour.

It can also be difficult — or dangerous — for divers to venture down for an inspection.

This was the situation last winter with the Third Avenue Bridge in downtown Minneapolis, where the streambed has degraded around a bridge pier, causing erosion to the pier.

“The Third Avenue inspection was not totally detailed. We knew there was a void under the bridge, but it was very hard to visualize,” DeWall said.

Early ice build-up halted further inspection in November, so MnDOT asked 3D sonar scanner manufacturer Teledyne BlueView to scan the area as a demonstration of its equipment.

A video of the inspection is below:

Multiple holes were cut in the ice sheet to deploy the sonar, which provided an image of the bridge scour by emitting sound-waves that created a point cloud.

“It gives you a large data set of where the sound reaches and comes back to the equipment,” DeWall explained.

The 3D image provides a level of detail that will enable repair and construction contractors to make more accurate bids, saving MnDOT money on projects.

Although dive inspectors are also beginning to invest in this new technology, MnDOT wants its own equipment to perform quick assessments of troublesome spots without going through the lengthy contracting process.

The Federal Highway Administration is conducting a pooled fund study to see if the technology eliminates the need for dive inspectors all-together.

MnDOT also plans to use its 3D scanning sonar to inspect repair projects and assess bridge construction.

One of DeWall’s first goals is to take a scan of the Hastings bridge after construction is complete, which will provide a baseline scan that can be compared against future inspections. The old bridge has had problems with the loss of rocks at its piers. It is unclear if the rock just sinks or is washed away downstream. Monitoring will let MnDOT see what is happening over time.

“Inspection is just one part of it,” DeWall said of the sonar equipment. “The big interest in this project is coming from our construction folks.”

Post-Construction

Imagine building a new house and not being able to complete the final walk-through.

This is the situation that transportation departments face when they build a new bridge, due to the limitations of underwater inspections.

“With 3D technology, you can go back afterward and check to make sure things were done the way they were supposed to,” DeWall said.

DeWall wishes the state had the scanner many years ago when a bridge was built that required expensive correction.

A bridge construction crew left construction material behind under the water, which wasn’t discovered until the redirected water flow caused significant erosion to the bridge pier.

Divers picked up that something was going on during a routine inspection, but engineers still had to bring in depth finders to get a better look. Due to the water current, they were limited in how close they could get to the bridge pier, and turbulence crashed their boat against the pier, damaging the transducer.

Not only would this 3D technology have provided a more thorough assessment than the depth finder, it also could have captured the imagery from a safe distance away.