Just in time for spring, new guidance is available from the Minnesota Local Research Board on the best irrigation methods to establish fresh turfgrass. Researchers tested five irrigation methods for watering new installations of salt-tolerant turfgrass. They developed an instructional course for contractors and guidance for homeowners to promote successful turfgrass installation.
Continue reading Improving Roadside Turfgrass EstablishmentTag Archives: salt-tolerant
New recommendations aim to help roadside turfgrass thrive
Keeping Minnesota’s roadsides green is about more than just aesthetics—healthy turfgrass can improve water quality, reduce erosion and road noise, and provide animal habitat. However, harsh conditions such as heat, drought, and salt use can make it difficult for roadside turfgrass to thrive.
In 2014, as part of a study funded by the Minnesota Local Road Research Board (LRRB), researchers in the University of Minnesota’s Department of Horticultural Science identified a new salt-tolerant turfgrass mixture that could be used on Minnesota roadsides. But, when MnDOT began using the mixture, called MNST-12, the agency experienced a series of installation failures.
Now, led by Professor Eric Watkins, the research team has identified new best management practices for installing and establishing this type of salt-tolerant turfgrass. The study, funded by the LRRB, specifically focused on watering practices, soil amendments, and planting date for both seed and sod.
“Newer improved seed or sod mixes like MNST-12 may have differing requirements for successful establishment compared to other species or cultivars that contractors and other turf professionals are more familiar with,” Watkins says. “Since all of these management practices are prescribed—or not prescribed—in the MnDOT specifications, generating data that can inform future specifications is a valuable outcome of this work.”
The study, which was conducted over several years, included experiments on how water should be applied to new MNST-12 turfgrass installations, the use of soil amendments at the time of establishment, and the effect of the seeding or sodding date on the success of a new planting.
Based on their findings, the researchers recommend these changes to MnDOT specifications:
- No soil amendments are necessary, but adequate seedbed preparation is important.
- Seeding is preferred to sodding between August 15 and September 15.
- Sodding can be permitted throughout the year, but only if the installer is able to supply frequent irrigation.
- When watering in sod, attention should be given to the species being used and local rates of evapotranspiration (evaporation from both the soil and plant leaves). Sod installers can anticipate using between 100,000 and 170,000 gallons of water per acre to ensure a successful establishment.
- Sod can be mowed as soon as sufficient root growth prevents an operator from manually pulling up pieces by hand, but it should not be mowed if wilting from heat or drought.
Currently, the researchers are using the results of this project to develop methods for educating and training stakeholders, including turfgrass installers, on these best management practices. They are also developing systems that could be used by installers in the field to help maximize the success rate of turfgrass installations.
“These best management practices can help limit installation failures and reduce maintenance inputs for future installations, providing both an economic and environmental benefit,” Watkins says.
“The knowledge and improved specifications we gained through this research will allow us to make our contractors more successful, which makes MnDOT successful,” says Dwayne Stenlund, MnDOT erosion control specialist. Because local agencies often rely on these MnDOT specifications as a guide for their projects, they will also benefit from the improved practices.
Stenlund also says the new specifications—especially those related to watering requirements—could allow for a clearer understanding of the true cost and value of turfgrass installation and maintenance work, which could ultimately improve the accuracy of the project bidding process.
In another project, the research team is exploring other turfgrass stresses, such as ice cover and heat. They are also testing additional turfgrass species and mixtures in an effort to continue improving MnDOT specifications for roadside turfgrass installations.
Salt-tolerant sod and seed mixes bring greener roadsides to Minnesota
For Minnesota’s roadside grasses, life isn’t easy. To survive, grass must be able to withstand extreme stresses including drought, heat, disease, soil compaction, poor quality soils, and high levels of road salt. Ideally, it could survive all that while still looking lush and green.
“Many roadsides, especially in metropolitan areas, need to look good,” says Eric Watkins, associate professor in the Department of Horticultural Science. “In addition to aesthetics, quality roadside vegetation is needed to prevent erosion and maintain water quality from roadside runoff.”
In 2010, MnDOT noticed a number of its new sod and seed plantings were failing and asked U of M experts to take a look at its specification. “We saw the problem immediately,” Watkins says. “The specification was for a mix with a lot of Kentucky bluegrass, which needs a great deal of care and watering. There was clearly an opportunity for improvement.”
During the next several years, Watkins’ team, led by former graduate student Josh Friell, worked to identify the best seed and sod for use along Minnesota’s roadsides in research sponsored by the Minnesota Local Road Research Board and MnDOT. Findings are now available in a final report.
The study was completed in several stages. First, many different types of cool-season grasses were planted in the fall and assessed the following spring to determine their ability to establish and survive on roadsides in Minnesota. Next, researchers looked at the salt tolerance of those grasses.
“In cold-weather climates like Minnesota’s, salt tolerance is required because of the application of deicing salts in the winter,” Watkins explains. “To determine if a grass species could stand up to this stress, we applied different levels of salt solution to the different grass species in a greenhouse. We identified several types of fescue grass as the most salt tolerant.”
Based on the results of the first two stages, researchers developed and tested 50 different grass mixtures along Minnesota’s roadsides and evaluated the survival and performance of those plantings for two years. In addition, each mixture was planted under a movable rain-out shelter to determine drought tolerance. This phase of the study resulted in the identification of a mix of three types of fescue for planting on roadsides in Minnesota.
Finally, researchers needed to find out if the new grass mixture would work as sod (sod growers need to be able to harvest it properly from their sod fields). “Most sod currently grown in Minnesota is Kentucky bluegrass, which isn’t the best for winter survival when salt stress is a problem,” says Watkins. “We grew 51 different grass mixtures as sod for 22 months and found that contrary to popular belief, fine fescue mixtures produced sod of acceptable strength for harvest.”
MnDOT has applied the research to standard specifications for construction activities for salt-tolerant sod products, salt/shade/drought-tolerant turf seed mixtures, and a third-party certification program for ensuring performance standards are met based on past and current research results, says Dwayne Stenlund, MnDOT erosion control engineering specialist. Researchers are also working with the state’s sod growers to produce sod grown from the new seed blends.
Moving forward, the researchers plan to continue their work to improve Minnesota’s roadside grass plantings. “The reality is that the success of sod or seed plantings depends on a number of factors, including time of year, amount of water, soil preparation, temperature, and sod harvest depth,” Watkins says. “In our next project, beginning this spring, we will identify the most important factors for the success of roadside plantings and sod cultivation, and then help MnDOT update the specifications for managing new installations.”
MnDOT, LRRB Pick New Research Projects with Financials in Mind
Minnesota’s transportation research governing boards put a new emphasis on financial benefits when selecting next year’s round of transportation research projects.
MnDOT’s Transportation Research Innovation Group (TRIG) and the Local Road Research Board announced their Fiscal Year 2016 funding awards this week after hearing proposals from researchers in several states. They selected 20 research proposals hall-marked by novel approaches to improving the environment, increasing transportation safety, improving construction methods and boosting the bottom line.
“We asked the principal investigator to present the safety and financial benefits up front, and how they can be implemented to improve the transportation system and economic viability of Minnesota,” said MnDOT Research Management Engineer Hafiz Munir. “We’re making a point early in the process to identify those potential benefits, quantify them and document them in our tracking system.”
Researchers will test new technology that could make crack-free pavements; find better, faster and less expensive ways to reclaim roads; and even explore how to use waste material from road construction projects as part of the landscaping to absorb water runoff.
Links are provided below to brief descriptions of each of the projects:
Bridges and Structures
Environment
- Concrete Grinding Residue: Its Effect on Roadside Vegetation and Soil Properties (MnDOT)
- Comparing Properties of Water Absorbing/Filtering Media for Bioslope/Bioswale Design (MnDOT)
Maintenance
- Salt Brine Blending to Optimize Deicing and Anti-Icing Performance and Cost Effectiveness, Phase III (MnDOT)
- Expanding the Success of Salt-Tolerant Roadside Turfgrasses through Innovation and Education (LRRB)
- Pothole Prevention and Innovative Repair (LRRB/MnDOT)
Materials and Construction
- Evaluation of Stabilized Full Depth Reclamation (LRRB/MnDOT)
- MnPAVE-Rigid 2.0 (MnDOT)
- A Mechanistic Design Approach for Novel Graphene Nanoplatelet (GNP) Reinforced Asphalt Pavements for Low Temperature Applications (MnDOT)
- Performance Monitoring of Olmsted County CR 117/104 (MnDOT)
- Slope Stabilization and Repair Solutions for Local Government Engineers (LRRB)
- Life-Cycle Cost Analysis Tool for Minnesota Pavements (LRRB)
Multimodal
- Exploring the Walking Tolerance of Transitway Users (MnDOT)
- Refining Return on Investment Methodology/Tool for MnPASS (MnDOT)
Policy and Planning
- The Futures Project: Planning for Technology Change (LRRB/MnDOT)
Traffic and Safety
- Examining Signing Options for Improving Safe Driving Behaviors in Work Zones (LRRB/MnDOT)
- Assessing the Impact of Pedestrian-Activated Crossing Systems (MnDOT)
- Development of Travel Time Reliability Measurement System (MnDOT)
- Weigh-In-Motion (WIM) Sensor and Controller Operation and Performance Comparison (MnDOT)
- Investigate the Effectiveness of Bluetooth Low Energy (BLE) Technology to Trigger In-Vehicle Messages At Work Zones (MnDOT)