Concrete Grinding Residue Doesn’t Appear to Negatively Affect Roadside Vegetation and Soil

A new MnDOT research study determined that depositing concrete grinding residue (CGR) slurry at specific rates on roadside vegetation and soil may not cause lasting harm to plant growth and soil quality; however, follow-up research is recommended.

Continue reading Concrete Grinding Residue Doesn’t Appear to Negatively Affect Roadside Vegetation and Soil

Study recommends strategies for reducing transportation disparities

Transportation contributes to many broad societal outcomes, such as employment, wealth, and health. Some Minnesotans, however, are underserved by current systems and face disparities and barriers in reaching their destinations. According to new research from the U of M, efforts to improve transportation equity need to focus on societal inequities—such as racial segregation and auto dependency—as well as the transportation barriers that affect specific communities and population groups.

Continue reading Study recommends strategies for reducing transportation disparities

MnDOT’s Smart Bridge Sensors Are Leveraged to Measure Vertical Displacement

A Minnesota Department of Transportation research study has developed a new method for estimating vertical displacements on bridges using accelerometers installed on the Interstate 35W St. Anthony Falls Bridge in Minneapolis. The dual-model approach shows potential for using these sensors to measure vertical displacement on steel, cable-stayed and other less-stiff bridges where traffic generates higher vibration frequencies. The method expands the industry’s knowledge of how to use smart sensors in new ways.

What Was the Need?

Since September 2008, the I-35W St. Anthony Falls Bridge has carried traffic over the Mississippi River in Minneapolis and funneled sensor data to researchers and MnDOT bridge engineers. This smart bridge features over 500 sensors that monitor strain, load distribution, temperature, bridge movement, and other forces and functions.

Sensors help designers and bridge managers learn more about how bridges shift and flex over time. Concrete expands and contracts, and bearings shift; sensor systems continuously gather data about these minute changes, offering an alternative to time-consuming inspection.

Sensors attached to a steel beam to study vibrations in a laboratory.
Sensors attached to a steel beam to study vibrations in a laboratory.

Researchers continue to identify potential uses for sensor data and new ways to use such information to analyze bridge properties and performance. In a 2017 study about monitoring bridge health, researchers learned to distinguish and associate specific vibration frequencies with structural damage, weather conditions and other factors. These frequencies were gathered by accelerometers, which measure structural vibrations triggered by traffic and environmental conditions.

Decks, piers and other structural elements displace vertically under loads and environmental conditions. Researchers and bridge managers wanted to know if accelerometers could be used to measure vertical displacements and help monitor bridge health.

What Was Our Goal?

MnDOT needed a procedure for measuring and monitoring vertical displacement on bridges under traffic and environmental forces. Investigators would use the sensor systems on the I-35W St. Anthony Falls Bridge to design and analyze this procedure.

“We need to learn more about sensors because we don’t have a lot of experience with them. This study gave us valuable information about accelerometers and the information they provide,” said Benjamin Jilk, Complex Analysis and Modeling Design Leader, MnDOT Bridge Office.

What Did We Do?

Indirect analysis and measurement of vertical displacements rely on estimations obtained through modeling. Investigators evaluated the most well-developed approach for measuring vibration frequencies like those tracked by accelerometers and refined the method. The team developed a dual-model approach: One model estimates loads and the other estimates displacements.

In a laboratory, investigators evaluated the impact of loading on displacement and vibration frequencies on a girder with contact sensors and accelerometers under moving and stationary loads. Researchers applied the dual-model analysis to laboratory displacement readings to compare the effectiveness of the model with contact sensor responses to loading.

Using laboratory data, investigators tuned the dual-model approach to accelerometer data available from the I-35W St. Anthony Falls Bridge. The research team then applied its identified tuning approach to the data from the bridge’s 26 accelerometers to determine the procedure’s suitability for estimating vertical displacement from vibration response on this bridge and its potential for other structures in the MnDOT bridge system.

New Project: Extreme Flood Risks to Minnesota Bridges and Culverts

Extreme flooding is a threat to Minnesota’s transportation infrastructure and the safety and economic vitality of its communities. A spate of recent flooding events around the state has demonstrated this and heightened the level of concern. Furthermore, climate change — a factor not traditionally accounted for in the design of the state’s infrastructure — is projected to enhance precipitation and the threat of flooding in coming decades.

Given this, MnDOT is undertaking an effort to better predict the threat flooding poses to its bridges, large culverts and pipes, which may be increasingly called upon to convey higher, more frequent flood flows than they were designed for.

The state transportation research program recently launched a two-year extreme flood vulnerability analysis study, which will develop a methodology for characterizing the vulnerability of the state’s bridges, large culverts, and pipes to flooding.

The effort builds upon the previously completed Flash Flood Vulnerability and Adaptation Assessment Pilot Project (2014), which scored bridges, large culverts, and pipes in MnDOT Districts 1 and 6 for flood vulnerability, allowing detailed assessments of adaptation options for each of their facilities to be prioritized.

This new study, which will be conducted by WSP, aims to develop and test ways to enhance the vulnerability scoring techniques used in the previous study and ensure their applicability throughout the state. Researchers will not actually undertake the statewide assessment, but specify an approach that could be used for it. They will also explore how the outputs of the analysis can be incorporated into MnDOT’s asset management systems. The results of this work will be a clear path forward for MnDOT to use for prioritizing adaptation actions — a key step towards enhancing agency resilience and maintaining good fiscal stewardship.

Project scope

The primary intent of this study is to develop a methodology for characterizing the flood vulnerability of bridges, large culverts, and pipes statewide. As part of the development process, the methodology will be tested on a limited, but diverse, set of assets across the state. Following a successful proof of concept, recommendations will be made on how the outputs (i.e., the vulnerability scores) can be incorporated into the state’s asset management systems.

By determining which facilities are most vulnerable to flooding through the techniques developed on this project, MnDOT can prioritize where adaptation measures will make the biggest impact, ultimately decreasing asset life-cycle and road user costs. Without the development of assessment techniques, adaptation measures run the risk of being implemented in a more reactive and/or ad-hoc fashion, with less regard to where the biggest “bang for the buck” can be realized.

This project will produce several technical memorandums, and is expected to be completed in early 2021.

Culvert Design Manual Provides Guidance for Accommodating Fish Passage

Several years of research have culminated in the publication of a culvert design manual that promotes the safe passage of fish and other aquatic organisms, as well as stream connectivity, throughout the state.

“Engineers designing culverts for Minnesota’s diverse ecological regions will benefit from this document, which offers sound guidance from many practicing experts about how to design culverts that allow aquatic organism passage and preserve stream integrity,” said Petra DeWall, former Bridge Waterway Engineer, Minnesota Department of Transportation (MnDOT).

What Was the Need?

Minnesota’s 140,000 miles of roads and approximately 92,000 miles of streams and rivers meet at tens of thousands of places. Culverts are a cost-effective solution to allow traffic to cross over smaller waterways. Historically, culverts have been designed with the safe passage of vehicles in mind. Recently, a state and national appeal for the safe passage of fish and other aquatic organisms, as well as for waterway integrity and connectivity, has influenced culvert design.

A pair of Topeka shiner fish
The Topeka shiner, once found throughout the state, is one species of federally endangered fish in Minnesota that must traverse culverts to survive.

MnDOT has supported many research projects examining fish and aquatic organism passage (AOP) through culverts, and nationally, a number of published resources exist on appropriate design. Because of the variety of ecological regions in the state, the range of culvert geometries and many other factors, no single solution can accommodate AOP through culverts statewide. A comprehensive culvert design guide was needed to inform designers about solutions that can effectively facilitate the movement of fish and other aquatic organisms in Minnesota while maintaining healthy streams.

What Was Our Goal?

The objective of this project was to produce a comprehensive and accessible culvert design guide that could be used by Minnesota practitioners to design culverts for AOP and stream connectivity. The guide would provide the following benefits:

• More efficient culvert design and permitting process for AOP.
• A central definition of typical designs, which would improve contractors’ familiarity with designs and lower construction costs.
• Avoidance of designs that could be detrimental to the natural environment.
• Avoidance of designs likely to lead to roadway damage and need for repairs.
• Fishery improvement through increased stream connectivity.

What Did We Do?

To determine the scope of the guide, researchers worked with experts from the Minnesota Department of Natural Resources (DNR), the U.S. Forest Service and others with knowledge of civil engineering, AOP and stream geomorphology.

They then sought information for the guide from a wide range of authoritative resources. A literature search examined current and past research by the research team and others; guidance documents from federal agencies; guidance from other states; permit requirements from the DNR and other agencies; and databases of fish populations, stream attributes and culvert data. The literature search also sought to reveal gaps in knowledge where further research specific to Minnesota was needed.

Additionally, researchers surveyed a cross section of highway design engineers and managers from MnDOT, county and city agencies, resource agencies and engineering consultants to identify current design practices for AOP and stream connectivity, and the degree of their effectiveness.

What Did We Learn?

The project resulted in the Minnesota Guide for Stream Connectivity and Aquatic Organism Passage Through Culverts, a thorough guide for culvert designers, hydraulic engineers and others involved in culvert design and construction in Minnesota. Topics addressed in the guide include:

• The need for culvert designs that include AOP and stream connectivity, as well as the current regulatory context.
• An overview of culvert design, categories of design methods that incorporate AOP and waterway connectivity, and a list of best practices.
• Site characteristics, analysis and tools related to energy dissipation, hydraulic analysis for AOP and sediment transport.
• A design method selection chart, information on certain designs and references for further information.
• Further guidance about design issues such as multiple barrel and floodplain culverts, grade control, retrofits and other cost considerations.

What’s Next?

The culvert design guide will be made available to users online. Future considerations for this project include an associated webinar and efforts to coordinate information presented in the guide with expectations and permitting requirements of MnDOT departments charged with culvert creation and implementation. Additional research is underway to assess culverts and fish passage with respect to storm vulnerability and future hydrologic scenarios.

This post pertains to the MnDOT and LRRB-produced Report 2019-02, “Minnesota Guide for Stream Connectivity and Aquatic Organism Passage Through Culverts,” published January 2019.

Affordable GPS-Based System Warns Drivers About Lane Departures, Approaching Curves

Researchers have developed an affordable camera-free curve and lane departure warning system that relies on consumer-level GPS, rather than sophisticated, expensive digital maps.

The technology uses cumulative driving trajectory data from GPS points detected every 100 milliseconds to predict driving path trajectories and compare these to mapped curves and lanes. With further development, the system can be used as an inexpensive smartphone app or retail device to warn drivers of lane drift and approaching curves.

“The goal of the project is to reduce lane departure crashes. We viewed this as a seed project and demonstrated that the system can be successful,” said Victor Lund, Traffic Engineer, St. Louis County.

What Was Our Goal?

The Minnesota Local Road Research Board sought research to develop a camera-free curve and lane departure warning system that uses consumer-level GPS capability without reliance on sophisticated, expensive digital maps.

What Was the Need?

Lane departures and run-off-road crashes cause more fatalities and serious injuries in Minnesota than any other accident type.

Many current warning technologies rely on cameras that identify lane position based on pavement markings. In inclement weather, stripes and pavement markings can be difficult or impossible to identify; markings also wear off over time, reducing visibility even in clear conditions. Camera-based lane departure warning systems are also expensive and generally restricted to newer luxury vehicles, making them inaccessible to the general driving public.

Though in-vehicle technology for the public usually falls outside the research interests of the Minnesota Department of Transportation and the Minnesota Local Road Research Board, the agencies have been funding development of lane departure warning technologies to improve driver safety. GPS technologies offer an intriguing path to consumer-level lane departure warning systems.

High-level GPS can be accurate to the centimeter level, but access is restricted and use is expensive. These systems also rely on accurate, lane-level roadway mapping, an elusive data set with high access costs.

What Did We Do?

Researchers began with a literature search of the uses of standard GPS receivers in lane departure and navigation. The research team then developed an algorithm for travel direction that uses standard GPS in a straight road lane departure system to determine driving trajectories at accuracy levels suited to safe driving needs.

Investigators adapted a publicly available digital mapping platform to the same algorithm to identify navigational points along curves and develop the curve lane departure warning system. The team enhanced standard safe distance methods to consider driver reaction time in determining when approach warnings should be issued.

Researchers then brought the two developmental stages of the system together with a warning system that identifies vehicle speed, curvature characteristics and safe speed limits, and calculates distance for driver response times to issue an audible warning to drivers on lane drift and a text warning of when and how much to reduce speed as the vehicle approaches a curve.

Two figures, each with a photo of a road segment an a graph that plots roadway curve distances with warning times.
The advanced curve warning system issued audible lane departure warnings when cumulative trajectories showed lateral drift within a curve.

For project testing and demonstration, investigators programmed the algorithm into a device with a built-in GPS receiver, connected it to a laptop for messaging and conducted driving tests on Rice Lake Road and on Interstate 35 near Duluth.

“From a technical point of view, this approach works. We developed a warning system with standard GPS that everyone has in a phone or vehicle. This is a lifesaving technology in a sense,” said Imran Hayee, Professor, University of Minnesota Duluth Department of Electrical Engineering.

What Did We Learn?

Finding no research on development of consumer-grade GPS for lane departure purposes, the research team adapted previous work on the relative accuracy of GPS readings from a MnDOT study on wearable GPS for work zone safety.

Researchers adapted a consumer-level GPS device to acquire data at 10-hertz frequency, which yields a GPS position point of 2.7 meters if a vehicle is driven at 60 mph.

The system calculates lane trajectory from cumulative readings and detects turns or drift. The curve warning system plots trajectories and compares these with open-source digital maps with road-level (rather than lane-level) accuracy to anticipate curves.

Illustrations show how the warning system uses shape points from maps with driving path averages to determine lane departures.

In road testing, the system issued audio warnings for every one of the approximately 200 lane changes, including curves. For curve warnings, the system scanned for curves at least half a mile ahead and calculated the vehicle’s speed and the distance to a curve to issue a timely text warning of the curve ahead and an advisory speed limit. Additional messages were issued when the vehicle was on the curve and when the curve had ended.

False alarms—warnings issued when the vehicle was not departing its lane—occurred in 10 percent of the tests, usually on sharp curves. Further adjustment of the algorithm and additional testing reduced false alarms significantly as the system accumulated data over multiple uses of the same roadway.

What’s Next?

Investigators filed a patent for the technology and will continue to develop the system. Further refinement of reference road direction information will improve accuracy and safety; the research team has developed a new project to employ vehicle-to-vehicle dedicated short-range communication technology to expand road direction reference data. The system will then need to be adapted for a consumer-level device or a smartphone app for use in any vehicle.

This post pertains to the LRRB-produced Report 2018-34, “Development and Demonstration of a Cost-Effective In-Vehicle Lane Departure and Advanced Curve Speed Warning System,” published December 2018.

 

New Resource for Using Cone Penetration Testing in Geotechnical Design

Designing foundations for bridges and pavements requires understanding the soil conditions and properties at the site. One of the best methods for calculating site conditions is the cone penetration test (CPT), in which a rod with a cone-shaped tip outfitted with sensors is driven into the soil. Engineers attach more rods to the first as the device is gradually driven to depths of 30 to 150 feet.

Researchers have developed a new manual to show geotechnical engineers how to conduct the CPT and use the data it gathers. The guide walks engineers through the process of CPT-based foundation design for sand and clay soils in deep and shallow foundations, helping engineers put the best technology to use.

A supplement to the Minnesota Department of Transportation’s Geotechnical Engineering Manual, this resource will provide improved methods for using CPT data in geotechnical design.

What Was the Need?

Designs for new bridges and structures require geotechnical investigation of a site’s soil conditions to evaluate the strength, settlement and drainage of a proposed foundation. Common design procedures rely on boring samples from the site and on standard penetration tests (SPT), which entail driving a weighted steel rod into the soil and recording the number of blows it takes to drive the rod a specified distance. Using lab analysis of samples and on-site tests, engineers determine foundation properties for the new design.

The cone penetration test (CPT) has become an attractive alternative to the SPT. CPT employs a probe with a cone-shaped tip outfitted internally with various sensors. Equipment in a CPT truck pushes the probe into the soil at the site; engineers attach rod sections behind the probe to continue pushing it in the soil to the desired investigation depth, which is usually 30 to 150 feet for transportation projects. Standard sensors allow the CPT to directly measure tip stress, pore water pressure and soil resistance; other parameters can be measured with additional sensors.

“One of the biggest impediments to deploying cone penetration testing more widely has been the lack of a practical document that integrates the latest findings and best approaches, and puts that information to use,” said Derrick Dasenbrock,
Geomechanics/LRFD Engineer, MnDOT Office of Materials and Road Research.

The CPT safely and efficiently produces accurate data and repeatable results, yet relatively few engineers in the United States know how to employ these tests and use the data for geotechnical design inputs. Users can search geotechnical engineering resources to learn how CPT results can be applied, but no standard procedure or manual is widely available for transportation projects.

cone penetration vehicle along roadway
Cone penetration testing can be conducted safely from inside a truck container alongside a highway.

What Was Our Goal?

Investigators sought to develop a new CPT design guide based on the most current CPT in situ testing research and development. The guide is intended for use in evaluating the performance of proposed bridges and structures, embankments and roadway features.

What Did We Implement?

The research team produced the 2018 CPT Design Guide for State Geotechnical Engineers, with step-by-step instructions for using the CPT to evaluate soil properties at sites and to design shallow footings and deep foundations. The document provides an overview of the CPT, its use in analyzing and characterizing soils, background on computing engineering parameters derived from CPT measurements, and detailed procedures for using those parameters to design and analyze shallow and deep foundations. Also included are derivation background, case studies and examples to help guide the user through the design process.

How Did We Do It?

Investigators began by reviewing guidelines for geotechnical engineering design based on CPT methods. The research team identified the key soil properties measurable by the CPT that are required for designing shallow and deep foundations. Then team members evaluated numerous CPT-based methods used for shallow foundations and over 40 use for deep foundations. Using the results of this evaluation, investigators identified methods with sufficiently robust and reliable performance that could be easily implemented by design engineers.

The team used CPT data from MnDOT geotechnical site investigations and developed short design case studies applying the recommended CPT design methods. After reviewing the CPT procedures with the Technical Advisory Panel, investigators organized design modules for soil characterization, shallow foundations and deep foundations, and documented the process in the design guide.

What Was the Impact?

The new guide is based on the current best practices for the CPT and was developed to establish MnDOT’s geotechnical design process while accommodating ongoing research. The guide presents recommended design methods and offers step-by-step instruction on how to calculate engineering parameters from CPT measurements and apply those design inputs to efficiently design foundation systems. Examples of problems and solutions are provided in the context of Minnesota cases, although the techniques are broadly applicable.

“Engineers can start using this design guide immediately in Minnesota—and elsewhere. The format is adaptable; California could add another module about earthquakes, for instance,” said David Saftner, Associate Professor, University of Minnesota Duluth Department of Civil Engineering.

The guide begins with a focus on characterizing soil properties from CPT measurements, providing an example for both sand and clay soils. The shallow foundation design module describes how to determine strength and soil settlement characteristics from CPT sensor readings using a method based on 166 full-scale field load tests. The deep foundation design module explains how to use the CPT to determine the required axial compression capacity of piling from a method based on 330 pile load tests.

What’s Next?

The guide is a much-needed resource for geotechnical engineers both within MnDOT and outside of the agency. The improved methods for using CPT data will encourage more frequent and widespread use of the method, improving the quality and reducing the time and cost of site investigations.

Available on MnDOT’s Geotechnical Engineering website as a supplement to the 2019 revision to the Geotechnical Engineering Manual, the guide will also be shared with a Federal Highway Administration CPT users group. Future considerations for the guide include a module on characterizing peat in organic soils and on seismic soil analysis.

This post pertains to Report 2018-32, “Cone Penetration Test Design Guide for State Geotechnical Engineers,” published November 2018.

New System Measures Travel-Time Reliability to Reduce Traffic Delays

Researchers for the Minnesota Department of Transportation have developed a new travel-time reliability measurement system that automates the process of gathering and managing data from multiple sources, including traffic, weather and accident databases, to generate travel-time reliability measures and reports for the metropolitan freeway network.

What Was the Need?

Improving traffic efficiency has become a key goal of traffic operations managers. In heavy traffic periods, MnDOT’s Regional Transportation Management Center (RTMC) coordinates with Minnesota State Patrol and MnDOT Maintenance Services to detect and quickly respond to freeway incidents in the Twin Cities. The RTMC works with the Freeway Incident Response Safety Team to assist and remove stranded vehicles using MnDOT emergency road service trucks. RTMC also updates real-time road condition information on its 511 traveler information system.

Overhead view of RTMC operator monitoring multiple screens
RTMC engineers use travel-time reliability data to plan for and respond to accidents, event traffic,
bad weather and road construction that cause freeway congestion.

MnDOT and RTMC measure delay and congestion on the metropolitan freeway system, reporting the data in annual reports like the 2017 Congestion Report. While useful, this data offers little predictive value on its own. MnDOT’s metropolitan freeway system features 4,000 loop detectors that transmit traffic data every 30 seconds; this data informs the congestion and delay reports.

Correlating this data with locations on the freeway system and various operating conditions, such as weather and traffic incidents, is time- consuming. But the data could be used to systematically evaluate traffic delays and develop strategies to mitigate congestion.

What Was Our Goal?

In this project, investigators sought to develop a system for automatically accessing weather, crash and traffic data to assess travel-time reliability—the variability in travel times for any given route. Travel-time reliability measures are becoming the key indicators for transportation system operations and management.

What Did We Implement?

Investigators developed a new travel-time reliability measurement system (TTRMS) that integrates different types of data (such as weather, traffic, incident, work zone and special event) acquired from multiple sources and automatically produces various types of travel-time reliability measures for selected corridors following user-specified operating conditions and time periods.

“Travel-time reliability is another way of looking at congestion and at strategies for making it more tolerable. It used to take several hours, even days, to process travel-time reliability data. The TTRMS processes it in minutes,” said Brian Kary, Director, MnDOT Regional Transportation Management Center.

How Did We Do It?

Investigators began by developing a detailed design of the TTRMS architecture—its modules, their functions and their interactions. The team then developed a work-zone data input module, where detailed lane configurations of a given work zone can be specified.

Developers designed a travel-time reliability calculation module as the core of the new system that can automatically access MnDOT’s traffic data archive, its incident database and the National Oceanic and Atmospheric Administration’s weather database. It can also accept a set of input data for work zones, such as lane-closure periods and locations. The reliability calculation module was then integrated with user interfaces and reporting modules. Finally the integrated system was tested with the real data gathered in 2012 and 2013 from Interstates 35E and 35W, U.S. Highway 169 and State Highway 100.

What Was the Impact?

The system generated accurate travel-time reliability measures for the test periods and given operating conditions. In particular, the output measures were automatically generated in both table and graphical formats, thus saving traffic engineers significant amount of time and effort.

The TTRMS includes map-based interfaces, which provide administrators and general users with substantial flexibility in defining corridors, specifying operating conditions and selecting types of measures depending on the purposes of applications.

To test the new system’s performance, the research team used the TTRMS to evaluate traffic strategies deployed for the February 2018 Super Bowl in Minneapolis. Two weeks before the event, reliability was low for the freeway system serving the football stadium. During the week of the Super Bowl, MnDOT and the Department of Public Safety aggressively managed traffic incidents to keep traffic moving, and reliability rose substantially despite the increase in tourist traffic. In the days immediately after the Super Bowl, operational strategies returned to normal levels, and reliability fell to previous levels. Results suggest that aggressive incident management during this exceptionally high-volume regional event enhanced traffic efficiency.

What’s Next?

Further enhancements to the TTRMS should include automating inputs for work zone data, such as lane closures, changes in work zone locations and time periods. Future research could help traffic operations prioritize resources and develop short-term and long-term freeway improvements, including studies of bottlenecks and the freeway network’s vulnerability and resilience for natural events and large-scale incidents.

This post pertains to Report 2018-28, “Development of a Travel-Time Reliability Measurement System,” published September 2018.

 

Minnesota's transportation research blog