Tag Archives: culvert design

Culvert Design Manual Provides Guidance for Accommodating Fish Passage

Several years of research have culminated in the publication of a culvert design manual that promotes the safe passage of fish and other aquatic organisms, as well as stream connectivity, throughout the state.

“Engineers designing culverts for Minnesota’s diverse ecological regions will benefit from this document, which offers sound guidance from many practicing experts about how to design culverts that allow aquatic organism passage and preserve stream integrity,” said Petra DeWall, former Bridge Waterway Engineer, Minnesota Department of Transportation (MnDOT).

What Was the Need?

Minnesota’s 140,000 miles of roads and approximately 92,000 miles of streams and rivers meet at tens of thousands of places. Culverts are a cost-effective solution to allow traffic to cross over smaller waterways. Historically, culverts have been designed with the safe passage of vehicles in mind. Recently, a state and national appeal for the safe passage of fish and other aquatic organisms, as well as for waterway integrity and connectivity, has influenced culvert design.

A pair of Topeka shiner fish
The Topeka shiner, once found throughout the state, is one species of federally endangered fish in Minnesota that must traverse culverts to survive.

MnDOT has supported many research projects examining fish and aquatic organism passage (AOP) through culverts, and nationally, a number of published resources exist on appropriate design. Because of the variety of ecological regions in the state, the range of culvert geometries and many other factors, no single solution can accommodate AOP through culverts statewide. A comprehensive culvert design guide was needed to inform designers about solutions that can effectively facilitate the movement of fish and other aquatic organisms in Minnesota while maintaining healthy streams.

What Was Our Goal?

The objective of this project was to produce a comprehensive and accessible culvert design guide that could be used by Minnesota practitioners to design culverts for AOP and stream connectivity. The guide would provide the following benefits:

• More efficient culvert design and permitting process for AOP.
• A central definition of typical designs, which would improve contractors’ familiarity with designs and lower construction costs.
• Avoidance of designs that could be detrimental to the natural environment.
• Avoidance of designs likely to lead to roadway damage and need for repairs.
• Fishery improvement through increased stream connectivity.

What Did We Do?

To determine the scope of the guide, researchers worked with experts from the Minnesota Department of Natural Resources (DNR), the U.S. Forest Service and others with knowledge of civil engineering, AOP and stream geomorphology.

They then sought information for the guide from a wide range of authoritative resources. A literature search examined current and past research by the research team and others; guidance documents from federal agencies; guidance from other states; permit requirements from the DNR and other agencies; and databases of fish populations, stream attributes and culvert data. The literature search also sought to reveal gaps in knowledge where further research specific to Minnesota was needed.

Additionally, researchers surveyed a cross section of highway design engineers and managers from MnDOT, county and city agencies, resource agencies and engineering consultants to identify current design practices for AOP and stream connectivity, and the degree of their effectiveness.

What Did We Learn?

The project resulted in the Minnesota Guide for Stream Connectivity and Aquatic Organism Passage Through Culverts, a thorough guide for culvert designers, hydraulic engineers and others involved in culvert design and construction in Minnesota. Topics addressed in the guide include:

• The need for culvert designs that include AOP and stream connectivity, as well as the current regulatory context.
• An overview of culvert design, categories of design methods that incorporate AOP and waterway connectivity, and a list of best practices.
• Site characteristics, analysis and tools related to energy dissipation, hydraulic analysis for AOP and sediment transport.
• A design method selection chart, information on certain designs and references for further information.
• Further guidance about design issues such as multiple barrel and floodplain culverts, grade control, retrofits and other cost considerations.

What’s Next?

The culvert design guide will be made available to users online. Future considerations for this project include an associated webinar and efforts to coordinate information presented in the guide with expectations and permitting requirements of MnDOT departments charged with culvert creation and implementation. Additional research is underway to assess culverts and fish passage with respect to storm vulnerability and future hydrologic scenarios.

This post pertains to the MnDOT and LRRB-produced Report 2019-02, “Minnesota Guide for Stream Connectivity and Aquatic Organism Passage Through Culverts,” published January 2019.

Darkness in Box Culverts Not a Likely Barrier to Topeka Shiner

Darkness box culverts does not present a complete barrier for southwestern Minnesota fish species, according to a new MnDOT study. The findings will reduce the cost and  delay of future box culvert replacement projects.

“This research will allow MnDOT to save both time and money when replacing other box culverts in southwestern Minnesota by eliminating the need for a fish passage study for each one,” said Scott Morgan, Principal Hydraulics Engineer, MnDOT District 7.

The research project is one of several undertaken by MnDOT and the Local Road Research Board to better understand fish passage (more at mndot.gov/research), and ultimately develop a Minnesota culvert design manual for accommodating aquatic species.

What Was Our Goal?

In this study, researchers developed several objectives in their efforts to assess the effect of low light levels on fish passage through replacement box culverts. As part of this effort, they wanted to determine typical light levels in the replacement culvert and other box culverts in the region. They also sought to determine if the Topeka shiner and other fish move through culverts in the same numbers they pass through control areas in the same stream, and whether light levels affect frequency of movement. Finally, if a barrier is determined, researchers sought to design or recommend a method for mitigating light in the culvert.

What Did We Do?

In the field, researchers characterized light in long box culverts (at least 8 feet by 8 feet) by collecting many light levels with a light meter at the water surface within the three culverts and at control reaches. They also measured light levels within the water column to characterize the light conditions a fish would experience.

To determine whether Topeka shiners passed through culverts in similar numbers as through control reaches of the same stream, and whether light levels affected their passage, researchers employed a mark-and-recapture process. They caught fish upstream and downstream from the culverts or control reaches, marked them with an identifier indicating where they were caught and released, and then resampled to see where fish moved. They also noted other culvert features that could affect passage, such as water depth and velocity.

Image of fish tank.
In light manipulation experiments at the St. Anthony Falls Laboratory, Topeka shiners and fathead minnows were allowed to choose channels to swim along. The degree of shade in one channel was adjusted from light to deep shade.

To control for confounding variables that could affect fish movement, a laboratory study measured Topeka shiner preference for light or dark channels. Researchers used a 25-foot-long double channel box with water diverted from the Mississippi River. Fish could choose to swim along light or shaded lanes as they preferred in this light manipulation experiment.

What Did We Learn?

Although there has been increasing concern over the potential for culverts to create behavioral barriers for fish and other organisms, this was the first study that quantified these behavioral effects for fish passage. Light levels in large box culverts were not identified as a potential barrier to the fish communities present in southwestern Minnesota. Two out of the three culverts monitored showed reduced fish passage compared to the control reaches; however, fish—including Topeka shiners—were able to pass through all three.

The longest and darkest culvert had the greatest difference in movement between the culvert and the control, but this variation could not be attributed solely to light levels. This finding was supported by experiments at the St. Anthony Falls Laboratory, where fish that could select either a shaded or lighted channel showed no avoidance of the shaded channel regardless of the shading level.

The light measurements in three culverts yielded an extensive data set that can be used to model light levels through culvert barrels. Light levels at the water surface depended on the culvert entrance, dimensions, construction material, orientation and elbows, while light levels in the water column were also affected by turbidity.

What’s Next?

The conclusions of this study apply only to Topeka shiners and other small warm water fish species, and to large box culverts like those studied. Additional research is required to investigate possible barriers created by smaller, darker culverts to light-sensitive fish species and the interactions between light and other variables such as velocity.

This post pertains to Report 2017-44, “Culvert Length and Interior Lighting Impacts to Topeka Shiner Passage,” published November 2017. The full report can be accessed at mndot.gov/research/reports/2017/201744.pdf.