Tag Archives: fish passage

Using Mussel Spat Rope to Facilitate Small Fish Passage in Culverts

Low-cost, low-maintenance mussel spat rope can help small fish species navigate through culverts by reducing current velocity and providing protected areas for fish to shelter and rest.  Recent research in New Zealand demonstrated the effectiveness of mussel spat rope—rope with long, dense fibers used in mussel aquaculture— to assist small species fish passing through steep, perched or high-velocity culverts. The successful results from this research led MnDOT to investigate mussel spat rope as a  method to facilitate fish passage in Minnesota’s culverts.

“Minnesota is a headwater state, and we have a responsibility to keep our fish population healthy. Mussel spat rope will be one more effective tool in the toolbox of methods we have to assist fish passage through culverts,” said Petra DeWall, Bridge Waterway Engineer, MnDOT Bridge Office

 What Was Our Goal?

The objective of this project was to determine whether mussel spat rope was an appropriate and effective tool in helping small fish species pass through Minnesota culverts.

What Did We Do?

Investigators conducted a literature review to evaluate previous studies. Then researchers from St. Anthony Falls Laboratory conducted experiments in the laboratory and in the field to investigate the use of mussel spat rope as a fish passage aid.

Hydrodynamic performance. Hydrodynamic performance tests were performed in a 20-inch-wide by 30-foot-long flume fed by water diverted from the Mississippi River into the laboratory. Researchers measured velocity, depth and water surface slope, and sediment accumulation around arrays of ropes. They installed single- and multi-rope configurations and examined many variations of flume flow and depth, recording the rope’s effects on water velocity and turbulence.

In a second experiment, researchers released fine sand into the flume containing two- and four-rope configurations to investigate the rope’s effect on sediment transport. Because the ropes slowed local water velocity, deposits were observed on, between and under the ropes in two different depth tests after one and two hours of sediment feed.

Rope durability, performance and use by fish. Researchers installed mussel spat rope in two Minnesota box culverts: one in the northeast serving a fast current trout stream and one in the southwest serving a slow current prairie stream in critical fish habitat. Double strands of mussel spat rope were installed near a wall in each culvert and examined many times for approximately two years. Each observation included photographic and video recordings of the installations.

2018-13-p1-image
A long interior view to the open end of a large box culvert shows a double strand of mussel spat rope installed in the water along the left wall.

Small fish species’ interaction with the rope. Laboratory investigations of fish behavior with the rope were conducted in a 5-foot-wide by 32-foot-long flume with a raised section representing a box culvert. Two Plexiglas windows allowed viewing. Researchers installed two sets of double-strand ropes along a wall, similar to those in the field sites. Four video cameras tracked motion, recorded overhead views of the flume and captured fish behaviors at the midpoint and ends. Researchers used three species of small fish common to Minnesota: fathead minnow, white sucker and johnny darter. Five fish were released into the test area at a time and allowed to swim for an hour. Their progress and behavior were filmed and analyzed.

What Did We Learn?

Key observations from these investigations follow:

  • Mussel spat rope created small corridors (about 6 inches) of reduced velocity and turbulence along its length, which was sufficient to aid the passage of small fish. Sediment collected in, between and beneath the ropes. The presence of culvert floor sedimentation may assist fish passage.
  • The rope displayed wear over two years in the field, raising a concern about plastic microparticle release into streams. Sediment covered some ropes over time, suggesting a need for maintenance in some culverts. Only a few fish were observed at the field installations.
  • In the laboratory flume, test fish swam near and between doubled rope lengths, apparently taking advantage of the reduced current near and beneath the ropes. While there was variation among species, most fish that swam upstream through the simulated box culvert ended their passage on the rope side, evidence that the rope provided cover and refuge from the current.

What’s Next?

Mussel spat rope will be a low-cost, low-maintenance tool to help small fish pass through culverts. The final report for this study includes guidance for installing the rope. The low-cost method will also be included in an upcoming guide for designing culverts that allow aquatic organism passage.

This post pertains to Report 2018-13, “Use of Mussel Spat Rope for
Fish Passage in Culverts,” published March 2018.

Darkness in Box Culverts Not a Likely Barrier to Topeka Shiner

Darkness box culverts does not present a complete barrier for southwestern Minnesota fish species, according to a new MnDOT study. The findings will reduce the cost and  delay of future box culvert replacement projects.

“This research will allow MnDOT to save both time and money when replacing other box culverts in southwestern Minnesota by eliminating the need for a fish passage study for each one,” said Scott Morgan, Principal Hydraulics Engineer, MnDOT District 7.

The research project is one of several undertaken by MnDOT and the Local Road Research Board to better understand fish passage (more at mndot.gov/research), and ultimately develop a Minnesota culvert design manual for accommodating aquatic species.

What Was Our Goal?

In this study, researchers developed several objectives in their efforts to assess the effect of low light levels on fish passage through replacement box culverts. As part of this effort, they wanted to determine typical light levels in the replacement culvert and other box culverts in the region. They also sought to determine if the Topeka shiner and other fish move through culverts in the same numbers they pass through control areas in the same stream, and whether light levels affect frequency of movement. Finally, if a barrier is determined, researchers sought to design or recommend a method for mitigating light in the culvert.

What Did We Do?

In the field, researchers characterized light in long box culverts (at least 8 feet by 8 feet) by collecting many light levels with a light meter at the water surface within the three culverts and at control reaches. They also measured light levels within the water column to characterize the light conditions a fish would experience.

To determine whether Topeka shiners passed through culverts in similar numbers as through control reaches of the same stream, and whether light levels affected their passage, researchers employed a mark-and-recapture process. They caught fish upstream and downstream from the culverts or control reaches, marked them with an identifier indicating where they were caught and released, and then resampled to see where fish moved. They also noted other culvert features that could affect passage, such as water depth and velocity.

Image of fish tank.
In light manipulation experiments at the St. Anthony Falls Laboratory, Topeka shiners and fathead minnows were allowed to choose channels to swim along. The degree of shade in one channel was adjusted from light to deep shade.

To control for confounding variables that could affect fish movement, a laboratory study measured Topeka shiner preference for light or dark channels. Researchers used a 25-foot-long double channel box with water diverted from the Mississippi River. Fish could choose to swim along light or shaded lanes as they preferred in this light manipulation experiment.

What Did We Learn?

Although there has been increasing concern over the potential for culverts to create behavioral barriers for fish and other organisms, this was the first study that quantified these behavioral effects for fish passage. Light levels in large box culverts were not identified as a potential barrier to the fish communities present in southwestern Minnesota. Two out of the three culverts monitored showed reduced fish passage compared to the control reaches; however, fish—including Topeka shiners—were able to pass through all three.

The longest and darkest culvert had the greatest difference in movement between the culvert and the control, but this variation could not be attributed solely to light levels. This finding was supported by experiments at the St. Anthony Falls Laboratory, where fish that could select either a shaded or lighted channel showed no avoidance of the shaded channel regardless of the shading level.

The light measurements in three culverts yielded an extensive data set that can be used to model light levels through culvert barrels. Light levels at the water surface depended on the culvert entrance, dimensions, construction material, orientation and elbows, while light levels in the water column were also affected by turbidity.

What’s Next?

The conclusions of this study apply only to Topeka shiners and other small warm water fish species, and to large box culverts like those studied. Additional research is required to investigate possible barriers created by smaller, darker culverts to light-sensitive fish species and the interactions between light and other variables such as velocity.

This post pertains to Report 2017-44, “Culvert Length and Interior Lighting Impacts to Topeka Shiner Passage,” published November 2017. The full report can be accessed at mndot.gov/research/reports/2017/201744.pdf.