Category Archives: Traffic and Safety

Refined ROI Methodology Shows Added Benefits of MnPASS Lanes

Researchers have developed a more comprehensive, standardized method for evaluating and selecting MnPASS managed lane projects. The new methodology uses a return on investment (ROI) and benefit–cost analysis framework that includes a more extensive set of factors, variables and perspectives than earlier methods. After applying the broader range of impact categories from the new methodology to an earlier study of a MnPASS corridor, researchers found that the MnPASS projects provide more benefits than previously reported.

In the past, MNDOT used a series of evaluation methods—cost estimation, performance measures and travel demand forecasting—to select new MnPASS corridors. While the recommendations and results from these assessments were adequate, each evaluation used a different set of objectives and assumptions. The range of benefit–cost factors in earlier evaluations was also limited to travel time savings, operating costs and crashes.

2017-37-p2-image
An overhead sign above a MnPASS express lane explains that drivers must have MnPASS or two or more occupants in a vehicle to use the lane during peak travel time of 6 a.m. to 10 a.m., Monday through Friday.

“Our previous corridor studies each had different benefit–cost elements, making direct comparisons difficult. This project makes it possible to quantify the transit, environment and travel time reliability benefits that we knew were there all along,” John Wilson, Economic Policy Analyst, MnDOT Office of Transportation System Management

MnDOT needed a more thorough and consistent benefit–cost analysis methodology to help decision-makers better assess MnPASS project alternatives; compare potential MnPASS corridors; and communicate why MnPASS is a financially effective, long-term strategy for addressing mobility and congestion issues.

What Was Our Goal?

The goal of this project was to develop a refined, standardized methodology to more accurately assess the ROI of MnPASS programs and projects. A refined assessment framework would include a broader range of financial and performance measures, allowing MnDOT to more thoroughly evaluate MnPASS investments.

What Did We Do?

Using ROI as the central framework, the research team set out to generate a more comprehensive method for estimating benefits and costs. To begin, team members identified limitations in the existing benefit–cost analysis methodology and developed a list of factors to include in the refinement process. Then they interviewed stakeholders from various agencies to better understand MnPASS planning and operations needs, as well as the data required to support the research and system benefits and costs.

Next, they began to develop the enhanced framework by defining economic, environmental and social ROI categories for MnPASS investments, and mapping the relationship between these categories and their associated benefits and costs. Benefit– cost analysis methods then were used to build the refined framework and to estimate benefit–cost ratios for projects. Finally, researchers applied the new framework to an earlier benefit–cost analysis of the Interstate 35 West (I-35W) North Managed Lanes project to compare the results of the new framework with the results from the earlier analysis.

What Did We Learn?

Researchers used additional benefit factors such as transit use, travel time reliability, emissions and noise to refine the ROI calculation methods. When they applied the new ROI framework to the I-35W project, they found that the MnPASS benefit–cost ratio significantly improves with the inclusion of transit and travel time reliability benefits.

“Benefit–cost analysis had not changed for a long time; we had looked at travel time, vehicle operating costs and safety. Now we have added travel time reliability, which is important because we are moving people, not just vehicles.”—Paul Morris, Senior Associate, SRF Consulting Group, Inc.

What’s Next?

The results from the comparative analysis yielded a notably higher benefit–cost ratio of 3.40 for the test corridor compared to a benefit–cost ratio of 2.11 in the original study, indicating that MnPASS projects have more positive effects than previously identified. Based on these findings, MnDOT will revise its benefit–cost guidance for evaluating MnPASS investments.

The research team was also able to measure the impacts of specific categories on the overall outcome of the calculations. Team members found that while the measures for reliability and transit impacts produced a meaningful change in the overall benefits, those for emergency response, emissions and noise impacts were very small relative to overall project costs. MnDOT will consider these findings in establishing updated procedures.

This post pertains to Report 2017-37, “Refining Return on Investment Methodology/Tool for MnPASS,” published October 2017. Other research initiatives to improve MnPASS operations can be found by searching “MnPASS” on MNDOT Research Services’ project pages.

 

Traffic Tubes Still Provide More Accurate Counts Than GPS Smartphones

Collecting traffic volume information from smartphone data, navigation systems and other GPS-based consumer and mobile technologies is not yet ready for use by MnDOT. However, the emerging technology offers useful information on driving origins and destinations for traffic monitors and planners.

“We’re on the cusp of using GPS technology to get traffic data from more facilities. We’re not there today, but we’ve spurred the industry to look at this opportunity,” said Gene Hicks, Director, MnDOT Traffic Forecasting and Analysis, who helped lead the research study on this topic.

MnDOT conducts traffic counts on its roadway network at regular intervals: every other year on state trunk highways, approximately every four years on city and county roadways, and every 12 years on low-volume roads. To make these traffic assessments, MnDOT currently stretches pneumatic tubes across traveled lanes and counts passing axles for up to 48 hours.

2017-49-p1-image
Using pneumatic road tubes to collect traffic data is an old and reliable practice, but installing them is time-consuming and puts workers in harm’s way.

“Using road tubes to collect traffic volume data is a proven method, but it’s an old practice and puts people in harm’s way. Smartphones may offer a useful alternative,” said Shawn Turner, Division Head, Texas Transportation Institute, who helped evaluate a beta version of traffic volume estimates derived from global positioning system (GPS)-based mobile devices.

What Was Our Goal?

With this project, researchers aimed to explore using smartphones and other GPS-based systems instead of pneumatic tubes to collect traffic volume data. The information collected was compared with actual volume counts from MnDOT traffic monitoring sites.

What Did We Do?

In May 2016 researchers began identifying data collection firms interested in participating in this research effort. These firms were developing products that gather, aggregate and analyze sufficient location data from GPS mobile devices to estimate traffic volumes. Researchers assessed and sorted packages from these firms to identify the best match for MnDOT’s needs.

Two firms that were initially interested withdrew from the project because their products were not ready for rigorous testing. The research team then developed an agreement to work with a third firm, StreetLight, to develop and evaluate traffic volume estimates from GPS-based devices.

Researchers and StreetLight worked together to develop and evaluate traffic volume data. Investigators provided MnDOT traffic count data to the vendor for calibration of its approach, and investigators suggested several ways to enhance StreetLight’s analytics.

2017-49-p2-image
Smartphones, navigation devices and other GPS-based consumer and commercial personal devices collect data that can be used to develop traffic volume estimators.

 

The vendor developed its proprietary approach, combining GPS-based navigation data with location-based service data. The firm normalized these two data sets with U.S. Census population projections, then calibrated and scaled samples with data from 69 MnDOT permanent ATR sites. StreetLight then estimated traffic volumes for MnDOT based on 7,837 short-duration count sites.

What Did We Learn?

On multiple-tube, high-volume roadways, MnDOT expects an accuracy of over 95 percent. The correlation between AADT tube-based data and StreetLight’s data was 79 percent without calibration and scaling, and 85 percent when scaled and calibrated. GPS-linked traffic volume estimations are approaching acceptable accuracy for MnDOT, but are not yet sufficiently accurate to replace tube counting for assessing AADT.

Estimation accuracy varies heavily with traffic volume levels. At high levels of traffic, larger sample sizes of mobile devices seem to drive more accurate assessments. At over 50,000 AADT, StreetLight estimates reached mean absolute percent error levels of 34 percent. At AADT levels below 20,000, the percent error rates ballooned. At all traffic levels, GPS-based data was measured at 61 percent mean absolute percent error.

Low-volume roads and frontage roads where multiple roadways converge had to be removed from count sites for estimating AADT. Overall, some of the GPS-based data fell within 10 to 20 percent absolute percent errors, which is acceptable, but other estimates fell well outside an acceptable range, and the highest errors occurred in low-volume roadway assessments.

What’s Next?

GPS-based data offers granular information that tube counts cannot, like average annual hourly volume estimates, and origin and destination data. With improvements to analytical processes for all data, GPS-based data may provide value outside of AADT estimates.

Currently, MnDOT is evaluating origin-destination data that StreetLight is providing for use in traffic studies and planning analyses. Current research by the University of Maryland and the National Renewable Energy Laboratory is gathering data with better error rates and will be extended in Colorado, Florida and Rhode Island. MnDOT expects volume estimation from GPS-based data will continue to improve and will likely be an acceptable alternative to tube counting in a few years.

This post pertains to Report 2017-49, “Using Mobile Device Samples to Estimate Traffic Volumes,” published December 2017.

New Software Models MnPASS HOT Lane Changes

Until recently, Minnesota drivers could only enter or exit high-occupancy toll (HOT) lanes via select ramps and access points. But MnDOT has changed most of its MnPASS express lanes to an open-access system to allow more movement between general purpose and high-occupancy toll (HOT) lanes.

Although MnDOT prefers this open access system, there could safety concerns for allowing lane changes in certain locations, especially if traffic patterns change. A new design tool developed by MnDOT-sponsored research enables traffic engineers to evaluate existing or prospective HOT corridors and determine the impact of open or closed access. When data shows changes in traffic patterns and congestion, the software also allows technicians to model and design changes in MnPASS access to improve drive mobility and safety.

“Nothing like this has been developed anywhere else. There is a lot of debate around the country about high-occupancy designs. This tool helps us develop designs and monitor existing corridors,” said Brian Kary, Director of Traffic Operations, MnDOT Regional Transportation Management Center.

Background

In Minnesota, high-occupancy toll (HOT) lanes are used by buses, carpools and motorists with transponders that trigger payments for rush hour use. During rush hour, fees increase as congestion increases; at other times, the lanes are free for all users.

MnDOT research in 2014 concluded that both closed and open HOT lane configurations effectively and safely improve traffic capacity. But researchers anticipated that roadway sections on an HOT lane corridor may eventually experience safety and mobility problems if toll prices are lowered or traffic volume increases. During heavy traffic, driving speeds often vary dramatically between HOT and general purpose lanes. Drivers moving into MnPASS lanes may force other drivers to brake suddenly to avoid collisions and trigger shockwaves of slowed or stopped traffic behind them. MnDOT prefers open-access designs for the increased options they offer road users, but it was not clear how best to manage access to reduce the incidence of shockwaves and the safety and mobility problems they create.

A section of a MnPASS express lane.
MnDOT has changed most of its MnPASS lane markings from double solid lines to skipped double lines to allow more open movement between general purpose and HOT lanes. A new software tool allows RTMC engineers to reassess MnPASS access to respond to changing traffic patterns.

The goal of this research implementation effort was to develop a software tool that the Regional Transportation Management Center (RTMC) could use to assess corridor operations and design. Based on design recommendations from earlier research, the tool would allow RTMC users to predict the safety and mobility impacts of a change from open to closed HOT lanes, and estimate where in the corridor such changes could be implemented safely and effectively.

What Did We Implement?

This effort leveraged findings from three previous MnDOT studies. Models and methods from “Evaluation of the Effect of MnPASS Lane Design on Mobility and Safety” (Report 2014-23) were used for the architecture of this new system. Investigators drew on “Expanding and Streamlining of RTMC Freeway Network Performance Reporting Methodologies and Tools” (Report 2014-05) to implement methods for retrieving historical data from RTMC’s system, cleaning the data and integrating it into the new software package. The project team then incorporated data from “Safety Impacts of the I- 5W Improvements Done Under Minnesota’s Urban Partnership Agreement (UPA) Project” (Report 2017-22) to develop and calibrate the new tool for estimating traffic impacts and shockwaves. A car-following and lane-changing model developed in a 2013 University of Minnesota study provided effective methods for ensuring realistic vehicle modeling and shockwave generation.

How Did We Do It?

Investigators developed this system with links to MnDOT’s database to draw on historical data to identify patterns of traffic demand over time and generate predictions of points in the MnPASS lanes at which shifts from open- to closed-access HOT lanes will offer the most benefit. The program’s code integrates the various models, data sets and tools mentioned above into software that integrates smoothly with the RTMC’s current software and capabilities for collecting speed and volume data, developing interfaces to model impacts of changing open designs at certain points in the freeway corridor to closed designs. The tool includes a module for access design, a module for generating data and a web application.

“This tool is calibrated for the Twin Cities. It takes real-time data and diagrams each location separately for lane changes and reaction time. It took theoretical ideas and made them usable,” said John Hourdos, Director, Minnesota Traffic Observatory, University of Minnesota.

What Was the Impact?

After receiving training in using the new software, RTMC engineers have embraced the MnPASS design tool to regularly report MnPASS performance to the Federal Highway Administration and to generate quarterly and annual analyses and recommendations for changing specific locations from open access to closed access. Closing requires restriping and changing signage—operations that allow MnDOT to respond quickly and easily to shifts in traffic patterns and potential mobility and safety impacts.

The project also offers data for the broader transportation community in which experts debate the relative merits of open- and closed-access HOT designs. With MnPASS, MnDOT has emerged as a leader in open design; this software allows sophisticated modeling of design impacts for the national traffic operations community.

What’s Next?

The MnPASS design tool effectively monitors corridor behavior and design changes. Improvements may yet be made to allow data calibration and validation for slower traffic speeds that represent mobility breakdowns, and to refine aspects of car-following and shockwave models. Increased density scenarios can also be further improved to better accommodate traffic density increases in regular lanes alongside HOT lanes.

In its current form, the tool will be used to analyze open- and closed-access designs on the Interstate 394 corridor to determine the best locations for changes to MnPASS lanes, and positions MnDOT and the RTMC to respond to traffic demand changes in the future.

This post pertains to Report 2018-11, “A Tool for Designing MnPASS
Access Spacing,” published March 2018. The full report can be accessed at
mndot.gov/research/reports/2018/201811.pdf.

 

MnDOT installs safety countermeasures at stop signs, stop lights

MnDOT is working on ways to reduce crashes at intersections by making stop signs and stop lights more visible to motorists. The agency will apply reflective red metal strips on nearly 1,000 stop sign posts and fluorescent yellow tape around 100 traffic signal lights across the state this summer.

“We think these two low-cost safety countermeasures will help reduce crashes at these higher risk intersections,” said Derek Leuer, traffic safety engineer.

13-JuneSafetyMeasures_400
Derek Leuer, traffic safety engineer, displays what the yellow reflective tape looks like around the back plate of a traffic signal light. This tape will be installed on 101 signals statewide this summer. Photo by Sue Roe

The stop sign project will be implemented on locally owned roads that intersect with two-lane, two-way state highways. The highways chosen are considered moderate- and high-risk crash corridors.

The reflective red strips will be installed on the stop sign post directly beneath the stop sign.

Rural intersection crashes are a serious issue in Minnesota, according to Leuer. From 2008 to 2012, there were 533 serious and fatal injury crashes at rural state highway intersections.

“This project aims to reduce those fatal and serious injury crashes in the state by making the stop signs easier to see,” he said. “Fatal right-angle crashes often are the result of one or more drivers failing to comply with a stop sign.”

The traffic signal project includes installing fluorescent yellow tape around the rectangular back plate that contains the green, red and yellow traffic signal bulbs. Leuer said this is a proven Federal Highway Administration safety countermeasure already used by other states.

“The reflective tape will make the signals look bigger and help motorists be more aware of them,” Leuer said. “This will be especially helpful at night and in low-visibility conditions.”

The florescent yellow tape will go on signals at intersections that are considered higher risk for crashes and may have a record of past crashes.

Cost of both projects is about $500,000.

MnDOT will evaluate both projects for effectiveness on an ongoing basis over the next three years.

“The installation of red reflective strips to stop sign posts and yellow fluorescent tape around signal lights may become another low-cost tool to help MnDOT improve roadway safety and move Minnesota toward zero deaths,” Leuer said.

This article by Sue Roe originally appeared in the June 13, 2018 MnDOT Newsline.

Smartphone prototype app warns drivers of high-risk curves

Lane-departure crashes on curves make up a significant portion of fatal crashes on rural Minnesota roads. To improve safety, solutions are needed to help drivers identify upcoming curves and inform them of a safe speed for navigating the curve.

“Traditionally there are two ways to do this: with either static signage or with dynamic warning signs,” says Brian Davis, a research fellow in the U of M’s Department of Mechanical Engineering. “However, while signing curves can help, static signage is often disregarded by drivers, and it is not required for roads with low average daily traffic. Dynamic speed signs are very costly, which can be difficult to justify, especially for rural roads with low traffic volumes.”

In a recent project led by Davis on behalf of MnDOT and the Minnesota Local Road Research Board, researchers developed a method of achieving dynamic curve warnings while avoiding costly infrastructure-based solutions. To do so, they used in-vehicle technology to display dynamic curve-speed warnings to the driver based on the driver’s real-time behavior and position relative to the curve. The system uses a smartphone app located in the vehicle to provide the driver with visual and auditory warnings when approaching a potentially hazardous curve at an unsafe speed.

“Highway curves [make up] 19 percent of the total mileage of the paved St. Louis County highway system, yet these curves account for 47 percent of all severe road departure crashes,” says Victor Lund, traffic engineer with St. Louis County. “In-vehicle warnings will be a critical strategy to reduce these crashes.”

To begin their study, researchers designed and tested prototype visual and auditory warning designs to ensure they were non-distracting and effective. This portion of the study included decisions about the best way to visually display the warnings and how and when audio messages should be used. “To create the optimal user experience, we looked at everything from how to order the audio information and when the message should play to the best length for the warning message,” says Nichole Morris, director of the U’s HumanFIRST Lab and co-investigator of the study.

Next, a controlled field test was conducted to determine whether the system helped reduce curve speeds, pinpoint the best timing for the warnings in relation to the curves, and gather user feedback about the system’s usefulness and trustworthiness. The study was conducted with 24 drivers using the test track at the Minnesota Highway Safety and Research Center in St. Cloud, Minnesota. The selected course allowed drivers to get up to highway speeds and then travel through curves of different radii, enabling researchers to learn how sensitive drivers are to the position of the warnings.

Based on the study results, the system shows both feasibility and promise. “Our in-vehicle dynamic curve warning system was well-liked and trusted by the participants,” Davis says. “We saw an 8 to 10 percent decrease in curve speed when participants were using the system.”

The project was funded by MnDOT and the Minnesota Local Road Research Board.

Enhanced WIM Reporting Software to Improve Commercial Traffic Weight Monitoring and Data Sharing

An update to BullConverter allows MnDOT’s statewide weigh-in-motion (WIM) system to adopt systems from more manufacturers. The BullReporter upgrade adds new reporting functions, including a View Vehicles function that provides an image of a vehicle along with a graphical representation of WIM data, such as weight and speed.

This upgrade, developed through a research study, expands the commercial traffic information that the Office of Traffic System Management can provide to the MnDOT Office of Bridges and Structures, local and state permitting agencies, the Minnesota State Patrol and other Minnesota authorities.

“With BullReporter, now we can produce daily, weekly and monthly reports of the overweight vehicles that cross over WIM sensors,” Benjamin Timerson, Transportation Data and Analysis Program Manager, MnDOT Office of Transportation System Management.

What Was the Need?

Weigh-in-motion (WIM) systems measure characteristics of individual vehicles on the road, generating records of data that include vehicle type, speed, axle weights and spacing. When a vehicle crosses WIM sensors in the pavement, it triggers electrical signals that are transmitted to a WIM controller, which converts the signals into usable WIM vehicle data. A number of manufacturers produce WIM sensors and controllers, and each vendor employs its own methods of processing signals and producing proprietary WIM data.

Image of WIM Controller
Load sensors and loop detectors in each lane of traffic are connected to a WIM controller in a cabinet that also houses a communication device. A centralized server connects to each field WIM controller and downloads daily WIM data files, which are then processed through BullConverter/ BullReporter.

In 2009, MnDOT began using BullConverter/BullReporter (BC/BR) software with heterogeneous WIM systems. BC converts incompatible, proprietary data into a uniform comma-separated values (CSV) format. BR generates reports from the converted CSV data, allowing the analysis of WIM data over different systems.

Currently, MnDOT’s Office of Transportation System Management (OTSM) uses WIM systems from International Road Dynamics (IRD), but recently began evaluating systems from Kistler and Intercomp. In a current study, investigators are evaluating the use of Intercomp WIM controllers with Intercomp sensors, IRD controllers with Kistler sensors, and Kistler controllers with Kistler sensors. These new WIM system combinations require new conversion functions in BC.

What Was Our Goal?

The goal of this project was to upgrade the BC/BR software package by improving  existing functions and incorporating new functions that will convert Intercomp and Kistler formats to the Bull-CSV format and refine export functions in BC. MnDOT also wanted to expand data reporting capabilities and analytical options in BR, including a View Vehicles capability for analyzing individual vehicles.

What Did We Implement?

MnDOT funded enhancements to the BC/BR software package to include Kistler and Intercomp formats and develop new data retrieval, statistical assessments and report generation applications, including View Vehicles.

How Did We Do It?

MnDOT provided the original BC/BR developer with a detailed list of enhancements and new conversion and reporting functions. The team developed a new WIM data downloading tool for Kistler controllers that would connect the controllers through the Internet and download and archive the raw data. Developers added two new conversion functions in BC to support conversion from Kistler and Intercomp formatted data to CSV-formatted data. The team also updated the export function in BC.

Image of View Vehicles Report display
The View Vehicles report displays on-screen images of vehicles along with WIM data in graphics that include vehicle class, GVW, speed and ESAL.

The software team then added View Vehicles report, a new reporting function, to BR. View Vehicles allows queries of vehicle records under any combination of parameters, including lane numbers, date and hour ranges, class numbers, gross vehicle weight (GVW), speed range, axle weight ranges and warning flags. Retrieved vehicle data are then displayed in web or PDF formats with a digital photo of the vehicle and graphics of selected WIM parameters.

The team added histogram functions for GVW and equivalent single-axle load (ESAL), which would retrieve a set of vehicle data based on user-selected parameters and then plot a graph or produce a spreadsheet. Developers enhanced a few other elements of BC/BR, wrote a manual for editing classification schemes and trained OTSM staff on the editing procedures.

What Was the Impact?

Deploying the updated BC/BR software package has significantly helped MnDOT and other state agencies. OTSM now can produce many different reports with a range of user-selectable data queries that can be customized to share with the MnDOT Office of Bridges and Structures, the Minnesota State Patrol and overweight permitting offices.

Expanded GVW and ESAL data generated with the updated software can be used in evaluating designs for new bridge construction. Permitting offices can draw upon BR reports to request changed axle configurations of overweight vehicles to prevent bridge damage. OTSM can also provide reports and vehicle images for compliance activities to the MnDOT Bridge Office, permitting offices and the State Patrol.

In addition, the updated BC/BR can provide data on traffic volume and vehicle class to the Office of Traffic Safety and Technology, can inform design decisions by the Office of Materials and Road Research, and can offer a wide range of useful information to the Office of Freight and Commercial Vehicle Operations.

“This software allows us to use different WIM systems and generate reports and analysis by integrating incompatible systems. We added more capabilities in BullConverter and increased BullReporter functions from 40 to more than 60,” Taek Kwon, Professor, University of Minnesota Duluth Department of Electrical Engineering.

What’s Next?

BC and BR are now fully updated for current needs and are in use by OTSM. The upgraded software will be used until industry changes or new analytical needs arise at MnDOT.

This posting pertains to Report 2017-34, “Enhanced Capabilities of BullReporter and BullConverter,” published September 2017. The full report can be accessed at mndot.gov/research/reports/2017/201734.pdf.

Design Considerations for Embankment Protection During Overtopping Events

Roadways in Minnesota’s Red River watershed are prone to flooding and overtopping, where wide flows of water wash across the surface of the roadway. Repairing the resulting damage to roadway embankments can be costly and time-consuming, requiring lengthy road closures. Protecting roads from destructive scour could significantly reduce the cost and time of repairs after a flood event. Researchers investigated three “soft” design methods using full-scale models and field monitoring, with flexible geogrid mat providing the best erosion protection. Regardless of protection technique, any physical separation from the soil beneath led to failure by creating a pathway for water to follow. Establishing root growth and vegetation would improve the performance of all techniques by anchoring the soil.

“This project developed a fairly complete matrix of useful erosion protection measures that our own staff can implement—techniques that are less elaborate and more cost-effective than hiring contractors,” said J.T. Anderson, Assistant District Engineer, MnDOT District 2.

“This project was a combination of basic and applied science, and is a great example of the university and MnDOT working together successfully to solve problems unique to our geography and climate,” said Jeff Marr, Associate Director, Engineering and Facilities, University of Minnesota St. Anthony Falls Laboratory.

What Was the Need?

Roadways in the Red River watershed are prone to flooding and overtopping, where wide flows of water wash across the surface of the roadway. Downstream scour and erosion of roadway embankments can result in breach or washout of the entire roadway. Repairing the damage caused by flooding and overtopping can be costly and time-consuming, requiring lengthy road closures. Frequent flood events in recent years reinforce the need to protect roadways where flooding is likely to occur.

Raising the roadway to prevent overtopping is not a feasible solution, as flood plain law does not allow moving the problem elsewhere by backing up the water. The most cost-effective option is to allow floodwaters to overtop roadways and to try to protect their embankments from scour. Protecting roads from destructive scour and erosion by developing cost-effective scour prevention measures could greatly reduce the cost of repairs, as well as the time required to reopen the roadway after a flood event.

What Was Our Goal?

The goal of this project was to investigate the effectiveness of slope protection techniques to shield overtopped roadways and their downstream embankments from scour and erosion. A further goal was to use cost-effective methods that could be installed by local agencies instead of contractors. The researchers evaluated several “soft” design methods using an integrated approach of full-scale models and field monitoring.

What Did We Do?

Using the findings from a literature review, the research team developed a field-based program to collect data on the hydraulics associated with full-scale overtopping events. Researchers recorded flood stage at several locations near the Red River during over-topping events and evaluated the failure modes under natural conditions. Annual field monitoring occurred from 2013 through 2016 during overtopping events.

Next, the research team conducted a series of experiments at a full-scale laboratory facility to study the hydraulic and erosional processes associated with overtopping. The facility simulated a transverse section of a roadway and included an upstream water supply, road crest, shoulder and downstream embankment slope.

Photo of sod growing through square mesh plastic geogrid material
Sod is overlaid with geogrid to help stabilize the sod’s root system and soil beneath.

Two slopes were examined in the lab: 4:1 (horizontal:vertical) and 6:1. With bare soil used as a control, three erosion protection techniques were investigated: armored sod hydraulic soil stabilization, turf reinforcement mat (Enkamat) and flexible concrete geogrid mat (Flexamat). All three are alternatives to riprap and other hardscapes, and encourage vegetation to grow through a mat, helping to stabilize the soil and protect the embankment from scour and erosion.

What Did We Learn?

The researchers were able to draw some definitive conclusions from the laboratory experiments:

  • Bare soil with no vegetative cover (the control) is highly susceptible to erosion and is the worst-case scenario. New installations should have established vegetation before the first overtopping event is expected.
  • All three mitigation techniques reduced erosion, but the flexible concrete geogrid mat provided the best protection. Researchers noted that these results describe overtopping that occurred immediately after the protection treatments were installed. Established vegetation and root growth would likely improve the performance of all techniques.
  • Initiation of erosion appears to be linked to small-scale inconsistencies in the soil, erosion control material and placement of the protection technique. Small failures can quickly develop into mass failure of the embankment.
  • Failure occurred in areas where the protection technique physically separated from the surface of the soil and exposed a direct pathway for the water to flow. Inflexible protection techniques were the poorest performers.
  • Common locations for failure were the toe of the slope and the upstream transition from the shoulder to the soil slope, with steeper slopes failing most often.

What’s Next?

No mature vegetation existed on the embankment slope in the laboratory flume, which mimics the post-construction period in the field. Full vegetation is more typical for much of an embankment’s life cycle. Since one of the most important functions of vegetation on a slope is the ability of its roots to anchor soil, further study of these techniques with mature vegetation could provide a better understanding of their effects.

Future studies should include other stabilization techniques as well as the effects of overtopping on frozen and thawing soils, through-embankment seepage or piping, and various soil types on performance of the stabilization technique. Future projects could also evaluate the use of multiple techniques along with the study of anchoring improvements and longevity of the erosion control products.


This post pertains to the LRRB-produced Report 2017-21, “Design Considerations for Embankment Protection During Road Overtopping Events,” published June 2017. NCHRP Synthesis Report 496, “Minimizing Roadway Embankment Damage from Flooding” provides the state of the practice on mitigating damage from overtopping. 

New Project: Protecting RICWS and DMS From Wind Damage

MnDOT recently entered into a contract with the University of Minnesota (UMN) to complete a research project to keep wind from damaging rural intersection conflict warning signs (RICWS) and other digital message signs (DMS).

The project is titled “Understanding and Mitigating the Dynamic Behavior of RICWS and DMS Under Wind Loading.” Lauren Linderman, assistant professor at UMN’s Department of Civil, Environmental and Geo-Engineering, will serve as the principal investigator. Jihshya Lin of MnDOT will serve as technical liaison.

“This project will find out the behavior of the DMS and RICWS under AASHTO defined design loads and develop the retrofitting system to avoid the experienced problems that will improve the public safety, reduce the maintenance cost and minimize impact to the traffic,” Lin said.

Background

RICWS have exhibited excessive swaying under wind loads, leading to safety concerns regarding failure of the support structure at the base. It is believed the heavy weight of these signs has brought the frequency range of these systems too close to that of the wind excitations. There is a need to investigate the wind-induced dynamic effects on these sign structures and to propose modifications to the systems to reduce the likelihood of failure. There is also interest in investigating the dynamic behavior of the DMS, particularly the loads on the friction connection.

This research project involves a field investigation to determine the structural performance of these two types of sign structures. Laboratory tests using a towing tank facility and a wind tunnel will be performed on scaled models and opportunely modified models to improve performance and minimize unsteady loads.

The outcome of this project is expected to develop an understanding of the RICWS and DMS sign structures and to provide modifications to improve the structural performance of the RICWS sign structures while maintaining the crashworthy requirements. The results will help to ensure the uninterrupted service of these sign structures, which are important to public safety.

 

Project Tasks

  • Task 1A: Development of Field Instrumentation Plan and Instrumentation Purchase
  • Task 1B: Experimental Determination of Load Effects and Dynamic Characteristics of Post Mounted DMS in Field
  • Task 2A: Development of Numerical Models to Investigate Post Mounted DMS Sign Demands and Fatigue
  • Task 2B: Validation of Numerical Models to Investigate Post Mounted DMS Sign Demands and Fatigue
  • Task 3A: Investigation of Design Loads and Relevant Fatigue Considerations for DMS
  • Task 3B: Analysis of Design Loads and Anticipated Fatigue Life of DMS
  • Task 4: Experimental Determination of Dynamic Characteristics of RICWS in Field
  • Task 5: Development and Validation of Numerical Models to Investigate RICWS Signs
  • Task 6: Numerical and Experimental Investigation of Drag and Vortex Shedding Characteristics of RICWS Signs Using Scaled Models
  • Task 7: Numerical and Small-Scale Experimental Investigation of Modifications to RICWS Sign Panel to Reduce Effects of Vortex Shedding
  • Task 8: Numerical and Analytical Investigation of Noncommercial Means to Damp Motion of RICWS Blankout Sign Structure
  • Task 9A: Research Benefits and Implementation Steps Initial Memorandum
  • Task 9B: Research Benefits and Develop Implementation Steps
  • Task 10: Compile Report, Technical Advisory Panel Review and Revisions
  • Task 11: Editorial Review and Publication of Final Report

The project is scheduled to be completed in March 2019.

Reducing Driver Errors at Two-Lane Roundabouts

Researchers studied driving behavior at four multilane roundabouts to better understand the relationship between traffic control designs and driver errors. Data collected showed that certain traffic control changes decreased turn violations but failed to eliminate yield violations. Researchers were unable to identify long-term solutions for improving roundabout design and signage, and recommended further research to improve the overall safety and mobility of multilane roundabouts.

“Even though the study did not provide a silver bullet on how to prevent crashes at multilane roundabouts, it did create an efficient tool to analyze and quantify driving behavior data,” said Joe Gustafson, Traffic Engineer, Washington County Public Works.

“This study has advanced our knowledge in multilane roundabout safety and is one step closer to providing much needed improvements to roundabout design guidance,” said John Hourdos, Director, Minnesota Traffic Observatory, University of Minnesota.

What Was the Need?

Roundabouts have been shown to improve overall in-tersection safety compared to traditional traffic signals. However, noninjury crashes are sometimes more frequent on multilane roundabouts than on single-lane roundabouts due in part to driver confusion. Common driver errors such as failing to yield and turning violations on multilane roundabouts have contributed to an increase in noninjury crashes.

Given the benefits of improved mobility, traffic throughput and injury reduction of multilane roundabouts, reducing the noninjury crash rate at multilane roundabouts is important to facilitating their use by Minnesota cities and counties. Identifying solutions to reduce common driving violations would be more sustainable than the current practice of converting multilane roundabouts back to single-lane roundabouts.

In a previous study on a two-lane roundabout in Richfield, Minnesota, researchers demonstrated that traffic control  changes could reduce some of these driver errors. However, more data was needed to support study results. Understanding driver behavior and improving traffic control devices are key factors in designing safer multilane roundabouts.

What Was Our Goal?

With limited research on modern multilane roundabouts, the Minnesota Traffic Observatory sought to collect more data to evaluate the correlation between traffic control design features and collisions. Instead of conducting manual observations, researchers used an innovative video analysis tool to collect and process recorded videos of driving behaviors at test sites. Based on the analysis, they attempted to identify driver behaviors and error rates to help reduce noninjury crashes at multilane roundabouts.

What Did We Do?

The research team selected four multilane roundabouts in Minnesota — two in Mankato, one in Lakeville and one in St. Cloud — to observe undesirable driving maneuvers. At each roundabout site, researchers mounted video cameras at key locations to record one to two weeks of driving behavior. Only one roundabout could be observed at a time because only one set of specialized video equipment was available.

The raw videos were processed to produce a data set for analysis. Researchers used TrafficIntelligence, an open-source computer vision program, to automate extraction of vehicle trajectories from the raw footages. They used the same software to correct any errors to improve data reliability. The resulting clean data from the recorded videos were supplemented with historical crash frequency data reports obtained from the Minnesota Department of Public Safety. Collectively, data from both sources allowed researchers to thoroughly investigate the frequency and crash types from the four roundabouts. A statistical analysis of the data revealed that turn violations and yield violations were among the most common driving errors.

Researchers also looked at how violation rates vary with the roundabout’s location and relevant design features. Based on these findings, researchers proposed signage and striping changes to reduce driver errors at the two Mankato test sites. After the changes were implemented, they collected additional video data.

What Did We Learn?

This study provided one of the most comprehensive analyses to date of driving behavior at multilane roundabouts. Researchers were successful in finding solutions for reducing turn violations, but they were unable to identify solutions for yield violations despite the vast amount of data.

Minor differences in the design at each roundabout presented specific challenges. The analysis focused on how each varying design feature impacted driving behavior. Proposed traffic control changes such as extending solid lines between entrance lanes, adjusting the position of yield signs and adding one-way signs successfully decreased turn violations. However, data from before and after traffic control changes showed an insignificant impact on decreasing yield violations. Importantly, the study produced a list of ineffective traffic control methods that can be eliminated from future studies, saving engineers time and money.

The TrafficIntelligence tool was crucial in efficiently processing and cleaning large amounts of raw video. With improvements made to the software program, the tool should be an asset to future research on roundabouts and to other studies requiring observations of driving behavior.

What’s Next?

The traffic control changes that were successful at reducing crashes at two-lane roundabouts should be implemented by traffic engineers. In particular, large overhead directional signs or extended solid lines between entrance lanes should be installed to help reduce turning violations. The analysis method used in this study could also be used for a robust before-and-after evaluation of future modifications to traffic control devices.

Additional research could further scrutinize the data already collected, and researchers recommend that more data be collected to examine additional traffic control methods and other intersection design elements to improve the overall safety and mobility of two-lane roundabouts. This research could also serve as an impetus for the study of numerous roundabouts in a pooled fund effort involving several states.


This post pertains to the LRRB-produced Report 2017-30, “Evaluation of Safety and Mobility of Two-Lane Roundabouts,” published July 2017. A webinar recording of the report is also available.

Using Smartphones to Deliver Effective In-Vehicle Work Zone Messages

Under simulated conditions, drivers were not distracted by controlled work zone-related messages delivered through smartphones. In fact, driving performance improved. Researchers also learned that the location of the smartphone did not affect the driver if the message included an auditory component.

“The main goal was to determine whether in-vehicle warnings conveyed through smartphones would be distracting to the driver. We found that wasn’t the case,” said Ken Johnson, Work Zone, Pavement Marking and Traffic Devices Engineer, MnDOT Office of Traffic, Safety and Technology.

“We learned that drivers had a lower mental workload when they experienced the in-vehicle messages. It really didn’t matter what modality we used. Half the messages were auditory only, and half were auditory paired with visual,” said Nichole Morris, Director, University of Minnesota HumanFIRST Laboratory.

What Was the Need?

Highway work zones require drivers to reduce speed and be aware of work crews, lane closures, traffic backups, construction equipment and other potential hazards on the roadway.

Transportation departments have long employed stationary warning signs, sometimes supplemented by portable changeable message signs (PCMSs), to alert drivers to upcoming construction projects. However, some previous studies have indicated that stationary warning signs are not always effective. In addition, PCMSs are costly and may be difficult to deploy in the field.

Smartphone technology offers an opportunity to deliver accurate and early in-vehicle warnings about road construction miles ahead. Digital messages could alert drivers about upcoming work zone conditions and improve safety for drivers and workers in the field.

But receiving in-vehicle messages about work zone conditions could distract drivers from safely operating their vehicles. MnDOT needed to study the advantages and disadvantages of using smart-phones to deliver in-vehicle work zone messages.

What Was Our Goal?

The primary goal of this project was to determine whether smartphones have the potential to safely deliver effective and accurate messages to drivers about upcoming road construction on Minnesota highways.

What Did We Do?

A 7-inch LCD screen
A smartphone was replicated through installation of an LCD screen positioned inside the driving simulator.

The research team developed and conducted an online survey that focused on Minnesota drivers’ perceptions of work zone safety and on their attitudes toward using smartphones and potentially receiving in-vehicle messages regarding work zone conditions.

Data from the surveys was used by the HumanFIRST Laboratory at the University of Minnesota to develop a driving simulation study designed to determine whether in-vehicle messages sent by smartphones could promote safe driving in work zones. The study analyzed 48 drivers operating a driving simulator within two work zones to test reactions to in-vehicle messages as compared to messages displayed on an external PCMS system. Researchers collected data about each participant’s visual attention, driving performance, mental workload and opinions on smartphone technology.

Researchers also reviewed previous national studies and published works to identify environmental and driver behavior risk factors related to work zones.

What Did We Learn?

An analysis of the simulation results showed drivers were very responsive to receiving in-vehicle messages regarding work zones and roadway hazards. Messages presented through smartphones did not cause driver distractions. In fact, some drivers’ performance actually improved following delivery of audiovisual messages.

Drivers preferred to receive audio messages, and researchers learned that a synthesized female voice (like Apple’s Siri) resulted in greater awareness and acceptance from the driver than a more natural or prerecorded voice.

Survey findings showed that only 5 percent of participants use a dashboard mount for their smartphones, while the vast majority keep their phone in the cup holder, on the console, in a backpack or purse, or on the passenger seat. A few participants said they hold their smartphone while driving. Investigating the safety impact of this behavior paired with an in-vehicle messaging system, researchers found that the location of the smartphone within the simulator (on the dash or passenger seat) did not negatively impact driver safety or performance, providing the work zone message contained the auditory component.

In-vehicle messages required less cognitive effort from drivers, and drivers had greater recall of the hazard warning message versus stationary PCMS signage.

A significant number of survey participants, nearly 20 percent, provided unprompted feedback that it was the state’s responsibility to provide factual work zone messaging information and to ensure in-vehicle technology employed does not pose a distraction.

What’s Next?

MnDOT will need to continue research into the viability of smartphones as the way to deliver in-vehicle work zone messages. The simulation study provided the findings needed to advance the project to field testing, where drivers would respond to in-vehicle messages from smartphones on a test track or under real roadway conditions. Another potential topic to explore through further research is the viability of messages delivered through electronic interface or dashboard features offered on some newer vehicles.

MnDOT should identify the medium needed to deliver in-vehicle messages and use the prescribed syntax outlined by the study for communicating messages. Researchers noted the existing 511 service provided by MnDOT currently provides road, traffic, weather and other information. A study should be undertaken to determine whether the 511 or a third-party app would be most appropriate for a future statewide in-vehicle messaging program.


This post pertains to Report 2017-19, “In-Vehicle Work Zone Messages,” published June 2017.