Minnesotans geared up for e-bike rebates. Now data reveals more about them

Republished from CTS News (Catalyst) for October 14, 2025

More than 14,600 Minnesota residents applied for a rebate through the state’s e-bike rebate program when it launched in 2024. Established by the Minnesota Legislature to help reduce the cost of buying a new e-bike, the program was so popular that within minutes of opening in June 2024, the number of applicants overwhelmed the system and crashed the website. The state was forced to fix the technology challenges and reopen the application about a month later.

The scenario drove researchers at the University of Minnesota to dig deeper into the data about who applied for the rebate in the first year. Their project aims to shed light on who benefitted from the program, get feedback on the application process, and learn more about rebate use.

E-bikes, which operate like a bicycle but have an electric battery and motor for pedaling assistance, have increased in popularity in recent years, and supporters are promoting their potential as a sustainable transportation option. The state legislature allocated $2 million in both 2024 and 2025 for the rebate program.

“Minnesotans seem to have an appetite to get an e-bike, whether that’s because of the state’s incentive or for other reasons—including that Minnesota has some of the best bike infrastructure around,” says Kaitlyn Denten, a researcher with the Humphrey School’s Institute for Urban and Regional Infrastructure Finance (IURIF) and project co-lead.

For the first part of this project, researchers analyzed rebate applicant data, which included demographic information, income level, tax filing status, and ZIP code but no personal identifiers. Data also included a person’s rebate application status, the rebate amount, and whether the applicant used the rebate to purchase a new e-bike.

In the program’s first year, the maximum rebate was $1,500; individual amounts depended on an applicant’s income level and tax filing status. People who applied for and received a rebate certificate could purchase their e-bike and eligible bike accessories from a participating retailer. Of the total applicants, 1,519 people received a rebate and 1,327 used one to purchase an e-bike. According to the data, half of the rebates went to households earning less than $75,000 a year.

The Twin Cities seven-county metro area had strong representation, with 66 percent of applicants, 67 percent of recipients, and 66 percent of rebate users coming from the metro area. The average age of applicants was 49 years old.

For the project’s second part, researchers used an online survey to collect feedback on the application process and information about how people who received a rebate were using their e-bike, among other data. The survey, which was available between March 17, 2025, and April 5, 2025, received nearly 4,500 responses.  

Of the survey respondents, 3,920 individuals applied for a rebate, 496 received a rebate, and 455 used the rebate to purchase an e-bike. For those who received a rebate but didn’t use it, among the reasons cited were that the rebate didn’t cover enough of the e-bike’s cost and the rebate certificate expired before they were able to use it. 

One surprising finding: Some people bought an e-bike even if they didn’t receive a rebate, says CTS scholar Camila Fonseca-Sarmiento, IURIF director of fiscal research and project co-lead. “Or, if a couple received a rebate, they ended up buying two e-bikes. This could be spurring the use of e-bikes instead of personal vehicles.”

Many survey respondents expressed frustration with the initial application process, referring to the technical glitches, long wait times, and unclear instructions. Several respondents did note, however, that the second application round ran more smoothly.

Some respondents also raised concerns about the fairness of the program’s rollout, pointing to barriers faced by people with limited internet access and electronic devices, people with disabilities, and people with inflexible work schedules (the application period opened on a weekday).

Future research should focus on the effects of 2025 program changes, including income eligibility, application processes, and rebate amount, the researchers say. In addition, researchers noted that a statewide travel study could help assess how rebates might influence a shift from personal vehicle use to an e-bike, a question left unanswered because of limited e-bike use among current rebate recipients.

This research project was sponsored by the Applied Research in Transportation (ART) Program, which addresses time-sensitive research questions in a 6 to 12 month timeframe. CTS and the Minnesota Department of Transportation contributed initial funding to launch this pilot program in 2024, with the Metropolitan Council joining in 2025. To reinforce the applied nature of the program, ART projects must directly address a current process, document, or policy need with an initial focus on sustainability in transportation and climate change impacts.

—Peter Raeker, contributing writer  

Related Research from MnDOT

Operational Characteristics of Conventional and Electric-Assisted Bicycles and Their Riders (ongoing)

Assessing the Economic Impact and Health Benefits of Bicycling in Minnesota

Human behavior insights are driving transportation safety forward

Reprinted from CTS News Catalyst, September 11, 2025

To better understand how roadway crashes can be prevented, it’s essential to explore the human behaviors that contribute to them. This objective is core to the work of the U of M’s Human Factors Safety Laboratory (HFSL). Research Associate Professor and CTS scholar Nichole Morris, who directs the lab, outlined its mission and impact in a recent Toward Zero Deaths (TZD) webinar highlighting Minnesota’s traffic safety research ecosystem. 

Minnesota TZD is the state’s cornerstone traffic safety program, employing an interdisciplinary approach to reducing traffic crashes, injuries, and deaths on the state’s roads. CTS partners with TZD to provide program administration, event coordination, and communications.

The HFSL brings together behavioral scientists and engineers dedicated to reducing roadway and occupational injuries and fatalities. They combine research on human behavior with the design and testing of user-centered systems to create solutions that work better for everyone.

“Human factors is the intersection between people and systems,” Morris explained. From in-vehicle technologies and roadway signage to partnerships with larger organizations such as law enforcement, transportation systems involve a wide range of human-system interactions.

Four research tracks shape the lab’s work:

  • Crash reporting. Although projects often intersect, crash reporting is foundational to the other research tracks. Morris refers to it as the lifeblood of transportation safety—without crash data, researchers don’t know what’s working and what isn’t. In one of its more consequential projects, the HFSL helped rebuild the front end of MNCrash—an application designed for law enforcement to document and report crashes. In close collaboration with the Minnesota Departments of Transportation and Public Safety as well as multiple law enforcement agencies, the HFSL team helped to streamline the user experience and improve data completeness and accuracy. Since deploying the updated version in 2016, MNCrash has been adopted by all law enforcement agencies across Minnesota. It’s featured in the sixth edition of the USDOT’s Model Minimum Uniform Crash Criteria and has become the national standard for crash reporting.
  • Maintenance and work-zone safety. In one project, leveraging the expertise and methods gained from MNCrash, the lab collaborated with MnDOT and maintenance workers on a streamlined app to make documenting work-zone intrusions easier. After its launch in 2022, the team continued work, using low-cost sensors and radar to help reduce select work-zone driving speeds in real time.
  • Pedestrian and non-motorist safety. The Stop for Me campaign, a collaboration with MnDOT, St. Paul, Ramsey County, and Western Michigan University, has been adopted in communities across Minnesota. The campaign—which combines enforcement and engineering treatments to improve yielding at crosswalks—has inspired similar efforts in more cities around the country. Other projects include studies on dedicated right-turn lanes and temporary and permanent pedestrian infrastructure to reduce conflicts between drivers and pedestrians.
  • Infrastructure and signage. The lab’s work on J-turns, which have proven effective at reducing fatal crashes, has helped to identify and address several navigational errors drivers may make when first encountering this type of intersection. The researchers have found that poor or confusing first experiences with J-turns can lead to negative community perceptions and result in pushback on J-turn implementation. The research has found specific pavement markings to help guide drivers and facilitate successful use of J-turns—leading to fewer crashes and better driver experiences.

Morris emphasized that investment in sound research methods and collaborations across partner institutions, organizations, and communities is what creates successful research outcomes. While studies may yield results in the moment, she says investing in methodology is what really carries the work forward. The HSFL’s work continues to inspire other states and agencies, Morris added.

—Krysta Rzeszutek, CTS digital editor

Related research from Nichole Morris

Developing Biochar Specifications for Stormwater Management 

Effective stormwater management helps keep roadway contaminants from entering Minnesota’s lakes and streams. Management practices include soil and vegetation in roadside bioretention systems that filter heavy metals and hydrocarbons created by vehicles. Based on other studies, retention and transformation of roadside pollutants should be improved by biochar application to existing or engineered soils. Abundant sources of biomass can be used to produce biochar, a soil amendment with numerous benefits. MnDOT and local agencies identified biochar specifications for effective use in stormwater treatment to support the next phase of testing and development of biochar design guidance. 

Continue reading Developing Biochar Specifications for Stormwater Management 

Evaluating Strategies to Prevent Early-Age Bridge Deck Cracking  

Premature cracking in reinforced concrete bridge decks is expensive to repair and may lead to rapid bridge deterioration. Despite changes to mix designs, transverse cracking after casting continues to be a problem in Minnesota. This project evaluated alternative concrete mix designs and reinforcement strategies to mitigate early-age bridge deck cracking, reduce maintenance costs and extend bridge deck service lives.

Continue reading Evaluating Strategies to Prevent Early-Age Bridge Deck Cracking  

Detecting Endangered Turtles with Environmental DNA

More than 60% of the world’s turtle species are endangered, including Blanding’s and wood turtles, which are native to Minnesota and may be found in the state’s wetlands, ponds, lakes and streams. To protect these vulnerable populations and their habitats, a cost-effective tool developed in this study will efficiently allow for the early detection of these turtles at transportation project sites. 

Continue reading Detecting Endangered Turtles with Environmental DNA

Increasing School Bus Stop-Arm Compliance

A significant number of school bus stop-arm violations occur every day throughout the country. In Minnesota, violation and citation data suggests these incidents are grossly underreported and underenforced due to a time-consuming reporting and enforcement process. This project examined current processes and recommended improvements to encourage higher rates of reporting and enforcement.

Continue reading Increasing School Bus Stop-Arm Compliance

Testing Recycled Plastics in Asphalt and Concrete Pavement Mixes

Addressing the increasing need for pavement materials coincides with an increasing supply of plastic waste. Incorporating recycled plastic into aggregate for transportation infrastructure is of growing interest. Testing plastic waste material in both asphalt and concrete pavement mixtures revealed promising results and the need to explore long-term performance and durability. 

Continue reading Testing Recycled Plastics in Asphalt and Concrete Pavement Mixes

Evaluating the Friction of Pavement Markings and Colored Pavement

Pavement markings make travel safer for all road users. However, the material used for retroreflectivity can be slicker than the surrounding pavement. To maximize the safety of bicyclists, motorcyclists and pedestrians, MnDOT and local agencies explored the friction values of different marking materials. Project results produced valuable information on relative friction between pavement and marking materials and, importantly, identified effective testing tools to evaluate and compare products.

Continue reading Evaluating the Friction of Pavement Markings and Colored Pavement

Evaluation of Corrugated Pipes Manufactured with Recycled Materials

MnDOT currently requires corrugated high-density polyethylene (HDPE) pipes to be made with 100% virgin materials. However, recent changes to federal standards allow for the use of corrugated HDPE pipes manufactured with more sustainable postconsumer and postindustrial recycled content. This project examined and compared the performance of both types of corrugated pipes to determine the suitability of using HDPE pipes manufactured with recycled materials in Minnesota.

Continue reading Evaluation of Corrugated Pipes Manufactured with Recycled Materials

Minnesota's transportation research blog