Tag Archives: research

Driver-assist system helps keep plows on the road

Darryl Oeltjenbruns, snowplow driver in District 7, operates the only driver assist system, or DAS, equipped snowplow in the state. The system helps snowplow operators see road alignments and features such as turn lanes, guardrails and road markings. (Photo by Chase Fester)
Darryl Oeltjenbruns, snowplow driver in District 7, operates the only driver assist system, or DAS, equipped snowplow in the state. The system helps snowplow operators see road alignments and features such as turn lanes, guardrails and road markings. (Photo by Chase Fester)

By Sue Roe, MnDOT Communications

Southwest Minnesota has the highest average wind speeds in the state—bad news for MnDOT snowplow operators who often drive in low visibility to clear roads.

“We have more days when the wind blows than when it doesn’t,” said Chase Fester, MnDOT District 7 transportation operations supervisor. “We struggle with the wind.”

That’s why District 7 is piloting a snowplow driver-assist system (DAS) developed by University of Minnesota researchers to combat the blowing snow and fog that often cause zero visibility. The DAS helps snowplow operators see the road alignment and features, such as turn lanes, guardrails, and road markings. Even in less extreme winter weather, snowplow operators gain assurance of their lane location using the system.

The driver assist system displays a white box on the screen when an obstacle, or in this case a mailbox, is located. If the object appears in the lane, such as a car stuck in a snow drift, the box turns red and gets bigger as the snowplow gets closer to the object. (Photo courtesy of MnDOT District 7)
The driver assist system displays a white box on the screen when an obstacle, or in this case a mailbox, is located. If the object appears in the lane, such as a car stuck in a snow drift, the box turns red and gets bigger as the snowplow gets closer to the object. (Photo courtesy of MnDOT District 7)

The DAS was developed and refined over the past 20 years under multiple research projects funded by MnDOT and the USDOT’s University Transportation Center program. Professor Max Donath, director of the University of Minnesota’s Roadway Safety Institute, led the work. In addition to plows, the DAS technology has also been applied in other specialty vehicles such as patrol cars and ambulances. Numerous vehicles using the system have been deployed in both Minnesota and Alaska.

The DAS uses GPS technology and a front-mounted radar to provide an image of the road and any obstacles in front of the operator. The image is displayed on a monitor inside the cab of the plow. The system also vibrates the operator’s seat as a warning if the plow veers too close to the roadway’s centerline or fog line.

“If the driver gets within one foot of the fog line on the right side, the right side of the seat vibrates. If the driver gets too close to the centerline on the left side, the left side vibrates,” said Fester.

The vibrations continue until the driver moves back into the center of the lane. The driver can also turn off the warning feature to clear snow from the shoulder.

The DAS is currently installed in one truck in District 7. The $75,000 cost makes it difficult to install in every truck in the district or the state, although having at least one system in every district may be possible, Fester said.

Fester said the system proved its worth one day in February when blizzard conditions caused zero visibility and forced many road closures in southwest Minnesota. He was called out at 2 a.m. Feb. 8 to assist a stranded state trooper and several motorists on a 12-mile stretch of Hwy 60 between Windom and Heron Lake. Fester drove a pickup behind the DAS-equipped snowplow, driven by Darryl Oeltjenbruns, to reach them.

As the DAS identified stranded vehicles on the way to Heron Lake, Fester and Oeltjenbruns checked to make sure they weren’t occupied with people. Once they made it to Heron Lake, they stopped at the community center, where the state trooper and the stranded motorists he brought in were located.

On the way back to Windom, Fester and the state patrolman continued to check on stranded vehicles as the DAS-equipped snowplow led the way. If the vehicles weren’t in the ditch, motorists drove behind the two MnDOT vehicles. If their vehicles were in the ditch, motorists rode in a Suburban that was also being escorted to Windom. After returning to Windom, the motorists were dropped off at motels or truck stops.

“When we first went out, there were about six stranded vehicles. Coming back from Heron Lake, there were about 15,” Fester said. “At one time, we had 12 vehicles in line as we drove back to Windom, driving about 10 to 15 miles per hour.”

Later that morning the DAS system was used again to locate other motorists.

“We continued to use it until about 10 a.m. or 11 a.m. that day,” Fester said. “The system worked great and kept everyone safe. It was an interesting morning.”

(Reprinted and adapted with permission from an article by Sue Roe in MnDOT’s Feb. 17, 2016 Newsline.)

Willow shrubs could be next great Minnesota snow fence

The benefits of living snow fences and other snow control tools to keep roadways clear of blowing and drifting snow have been known for decades, and MnDOT has been using a variety of these techniques for years to catch  snow before it gets to a road.

Living snow fences often consist of trees, grasses and even corn stalks left standing in a farmer’s field.  Now willow shrubs are being added to the list as a fast-growing, inexpensive snow control measure.

What’s new

WillowSeptember
Fish Creek willow shrubs (left) grow alongside corn in September 2015.

Researchers recently completed a study that investigated whether willow shrubs could make good living snow fences. While typical snow-fence plants, such as dogwood or cranberry shrubs, can take five to 20 years to establish themselves, shrub willows were effective at trapping snow after just two growing seasons, according to the study.

In spring 2013, researchers installed three varieties of shrub willow side-by-side in two-row and four-row configurations along about a quarter of a mile of Highway 14 in Waseca, where snow drifts are an issue. In April 2014, they cut the shrubs down to the ground  to encourage branching and bush density. Though the trimmed willows had little impact on drifting snow the first winter, each willow-shrub plot was collecting two to three metric tons of snow by the second winter, according to the research report. Researchers believe that after three or four growing seasons the willow shrubs could catch the entire mean annual snowfall on the site.

In the four-row configuration recommended by researchers, costs of raising, furnishing, planting and mulching came to about $3.60 per plant, which is dramatically less than the contract bid cost for traditional living snow fence species that cost more than $50 per plant. In addition, the willow shrubs could be harvested and sold as biomass every few years to provide an income source.

Past research

Willow trees is just the latest advancement in the state’s snow control program. A 2012 research project evaluated the costs and benefits of living snow fences and provided MnDOT with a payment calculator to determine how much to compensate landowners for installation and maintenance costs.

A recent research implementation project created a mobile-friendly Web version of the payment calculator tool.  The website also contains a tool for designing a own snow fence.

MnDOT has used these tools and other promotional efforts to nearly double the number of farmers with contracts for corn rows enrolled in the Living Snow Fences program.

What’s next

The willow species recommended by researchers will be evaluated further in 2017 when they install it as a living snow fence on a new construction site on Highway 60 between Windom and Mountain Lake. Researchers also recommend a future study to compare volume of road salt use before and after installation. They also want to look into identifying appropriate buffer distances to keep willow roots from interfering with cropland root systems.

Resources

Alternative fuels will help shape Minnesota’s transportation future

The mix of fuels used to power the vehicles on our nation’s roadways is diversifying rapidly.  While gasoline and diesel are still dominant, an increasing percentage of vehicle power is coming from alternatives such as biofuel, natural gas, and electricity. What could this shift mean for Minnesota’s transportation future? MnDOT and the Minnesota Local Road Research Board turned to U of M experts for analysis.

“The rise of alternative fuels is something we need to keep a close eye on, because it presents a number of issues that may significantly alter our state’s transportation system,” says Adam Boies, an assistant professor in the U of M’s Department of Civil, Environmental, and Geo- Engineering (CEGE).

Minnesota leads the nation in biofuel use, in part due to a series of legislative acts designed to encourage ethanol production and consumption. Boies predicts, however, that biofuel consumption in the state is near saturation and that future shifts will likely be between biofuels. “These shifts may alter the routes of heavy-goods vehicles in the state as refineries shift from corn and soy to fuels derived from agriculture wastes and forest byproducts,” he says.

If the price of natural gas remains significantly lower than diesel fuel, natural gas vehicles will likely make up an increasing share of the heavy-duty vehicle fleet in Minnesota. A larger natural gas refueling infrastructure will need to be developed, most likely by private organizations that manage fleets of vehicles. “As this happens,” Boies says, “efforts must ensure that natural gas vehicles and refueling infrastructure do not emit significant quantities of methane, which has a high global warming potential.”

Minnesota electric vehicle sales have lagged behind the nation—winter temperatures are one factor—but Boies expects the numbers to rise. He estimates 16 percent of new cars sold in Minnesota in 2035, and 56 percent in 2050, will be electrified. The growing numbers will require a more robust charging infrastructure, likely supplied or subsidized by government agencies, he says.

In the long term, on-road charging systems are being investigated. In these systems, under study in several countries, charging coils embedded within the roadway transfer power wirelessly to vehicles. “The systems could make electric vehicles drastically more efficient by reducing vehicle battery size,” he says.

Better vehicle efficiency is likely to continue the trend of falling fuel tax revenues. “Minnesota will need a method for producing revenues from electric vehicles to maintain long-term funding for the transportation road network,” he says. “Currently the higher price of electric vehicles results in increased revenues during vehicle registration, which tends to offset the difference in fuel tax revenues. However, as the price differential between electric vehicles and traditional vehicles shrinks, there will be decreased funding for Minnesota roadways unless additional revenue sources are found.”

Finally, emphasis on fuel efficiency in the light-duty and heavy-duty vehicle fleets will drive the weight of these vehicle segments in opposite directions. “Light-duty vehicles will get lighter and heavy-duty vehicle fleet operators will lobby for increased weight limits on Minnesota roadways to reduce the energy intensity of goods deliveries,” Boies says. “This growing disparity in weight between the two vehicle classes may require increased safety measures to reduce the severity of crashes between vehicle classes.”

“The question of how alternative fuels and electric vehicles will impact the transportation system, ownership models, and operating costs, as well as vehicle and driver safety, are extremely important topics to study,” says Ken Buckeye, MnDOT program manager. “The potential for these trends to impact our revenue streams is also very significant. When you couple those trends with the federal mandate for a CAFÉ standard of 56 mpg by 2025, we are likely to see some profound impacts that reach across modes, jurisdictions, and funding mechanisms.”

Boies’s research is part of a multi-pronged study funded by MnDOT and the LRRB that analyzed the technological shifts altering surface transportation and the implications for Minnesota. Other contributors included CEGE professor and principal investigator David Levinson and associate professors Jason Cao and Yingling Fan of the Humphrey School of Public Affairs. Their high-level white papers are compiled in a final report: The Transportation Futures Project: Planning for Technology Change.

MnDOT, LRRB select new research projects with eye toward results

MnDOT’s latest crop of transportation research projects have been identified. This year, researchers were asked to pay special attention to how their work could benefit the public and be put into real-world practice.

MnDOT’s Transportation Research Innovation Group (TRIG) and the Minnesota Local Road Research Board recently announced their Fiscal Year 2017 funding awards after hearing proposals from researchers at multiple universities. The two bodies chose 20 research proposals totaling about $2.9 million that will study new and innovative approaches to improving the environment, making transportation systems safer, improving construction methods and operating in more cost-effective ways.

According to MnDOT Research Management Engineer Hafiz Munir, MnDOT Research Services made some key changes to its annual requests for proposal that will help ensure research makes a difference to the agency’s bottom line. This year, researchers were asked early on in the proposal process how they would quantify their results, what benefits the research could achieve and how their research could be implemented in the future.

“Now we’ll be able to track those metrics and that will help MnDOT not only quantify the potential benefits of the projects, but also implement the results,” Munir said. “The bottom line is that we will be able to not only save money, but also improve the way MnDOT does business.”

Several of the 20 newly funded projects deal with improving transportation safety, Munir said, and many others are focused on implementing cost-saving practices, innovations and new technologies.

The projects approved in December 2015 will do the following:

  • Create an inexpensive GPS-based system that alerts the driver when a motor vehicle deviates from a lane or approaches a curve. (Project summary)
  • Find out whether a smartphone app can effectively warn drivers about upcoming roadway curves. (Project summary)
  • Determine whether different types of roadway turfgrass are better suited for specific regions of the state. (Project summary)
  • Create a comprehensive design guide for fish-friendly culverts.  (Project summary)
  • Determine how social media can be used to engage diverse community groups within the state. (Project summary)
  • Investigate the performance of the state’s first glass fiber reinforced polymer (GFRP) reinforced bridge deck, slated for construction in 2016.  (Project summary)
  • Develop signage recommendations to slow high-speed traffic as it approaches roundabouts.  (Project summary)
  • Gather truck reliability data, identifying truck bottlenecks and providing potential mitigation solutions for regular congestion areas. (Project summary)
  • Determine why anchor bolts are becoming loose on overhead signs, light towers and other support structures — and how to prevent it.  (Project summary)
  • Establish a system and smartphone app for accurately capturing and reporting data about intrusions into work zones.  (Project summary)
  • Develop an advanced sensor system to estimate long-term and dynamic vertical displacements on the I-35W bridge. (Project summary)
  • Investigate the necessity of pavement markings on low-volume roads and develop an approach to prioritize pavement marking projects.  (Project summary)
  • Compare the performance of different structural fibers in thin concrete overlays.  (Project summary)
  • Evaluate four performance test methods that predict the cracking behavior of asphalt mixes. (Project summary)
  • Investigate the link between transportation investment and job creation, and analyze transportation investments, business patterns and socioeconomic data in Minnesota counties. (Project summary)
  • Refine a taconite-based pothole repair compound, and develop a low-cost mechanized system to mix and place it in large quantities.(Project summary)
  • Investigate how much road salting can be safely decreased with the use of permeable pavements. (Project summary)
  • Evaluate the use of iron-enhanced check dams for capturing phosphate and toxic materials from roadway runoff. (Project summary)
  • Improve accessibility calculation capabilities and understanding of travel behavior by integrating data about highway bus operations, park-and-ride facilities, and urban parking costs. (Project summary)
  • Investigate the concept of estimating traffic volumes from mobile device samples to collect traffic data inexpensively. (Project summary)

Munir said the next steps for these projects this spring include creating  technical advisory panels, finalizing project work plans and preparing contracts. Some projects could begin early, depending on available funding and project-readiness. By the time Fiscal Year 2017 begins on July 1, funding will be available to begin all 20 projects.

Video Demonstration: Robotic Message Painter Prototype

In the above video, University of Minnesota-Duluth Associate Professor Ryan Rosandich tests a prototype of a robotic arm he developed to paint messages and markings on roadways. He calls the machine “The MnDOT Robot.”

During a test run in October 2015, the MnDOT robot painted a right-turn arrow and the word “ahead” on pavement at MnDOT’s Pike Lake station in Duluth.

Rosandich hopes commercial companies will show an interest in further developing his proof-of-concept technology into something that road authorities can use regularly to make work easier, faster and safer for their employees.

Companies interested in commercializing this technology can contact Andrew Morrow at amorrow@umn.edu.

Editor’s Note: The paint used in the above demonstration was diluted due to the cold weather at the time of the demonstration and does not reflect the condition of the paint expected in a typical application.

Roadway Safety Institute seminar series begins September 10

The Roadway Safety Institute will kick off its safety-focused seminar series on September 10 in Minneapolis with a presentation on the Minnesota Strategic Highway Safety Plan by Brad Estochen, MnDOT state traffic safety engineer.

Seminars will be held Thursdays from 3–4 p.m. throughout the fall semester on the U of M’s east bank campus. The free seminars, which will also be streamed live on the web, will feature the latest work of Institute researchers and other industry experts.

Detailed information about seminar topics and speakers will be available soon on the Institute website, or you can subscribe to receive e-mail updates from the Institute.

Hope to see you there!

Seminar Schedule

September 10 — Minnesota Strategic Highway Safety Plan
Brad Estochen, State Traffic Safety Engineer, Minnesota Department of Transportation

September 17 — Characterizing Uncertainty in Left-Turn Crash Reconstructions Using Event Data Recorder Data
Gary Davis, Professor, Department of Civil, Environmental, and Geo- Engineering, University of Minnesota

September 24 — Transportation Incidents, Events, and Disasters
Dan Work, Assistant Professor, Department of Civil Engineering, University of Illinois at Urbana-Champaign

October 1 — Low-Cost Centimeter-Accurate Mobile Positioning
Todd Humphreys, Assistant Professor, Department of Aerospace Engineering and Engineering Mechanics, University of Texas at Austin

October 8 — Title TBD
Linda Boyle, Professor, Department of Civil and Environmental Engineering, University of Washington

October 15 — Speaker TBD

October 22 — Automated Identification and Extraction of Horizontal Curve Information from GIS Roadway Maps: Improving Safety on All Roadways
David Noyce, Professor, Department of Civil and Environmental Engineering, University of Wisconsin–Madison

November 5 — Novel Collision Avoidance System for Bicycles
Rajesh Rajamani, Professor, Department of Mechanical Engineering, University of Minnesota

November 12 — Assessing Roadway Safety Risks in American Indian Reservations
Kathy Quick, Assistant Professor, and Guillermo Narvaez, Research Associate, Humphrey School of Public Affairs, University of Minnesota

November 19 — Pedestrian Safety, Pedestrian Behavior, and Intersection Design and Control
Per Garder, Professor, Department of Civil and Environmental Engineering, University of Maine

December 3 — Title TBD
Don Fisher, Professor, Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst

December 10 — A Positioning and Mapping Methodology Using Bluetooth and Smartphone Technologies to Support Situation Awareness and Wayfinding for the Visually Impaired
Chen-Fu Liao, Educational Systems Manager, Minnesota Traffic Observatory, University of Minnesota

Applying LiDAR to county transportation systems

A handful of county highway department employees in the Rochester area gathered recently at the Olmsted County Public Works Service Center for a presentation and live demonstration by University of Minnesota Research Fellow Brian Davis about his team’s work involving light detection and ranging – or LiDAR.

“LiDAR is like radar, but with light,” Davis said. “It gives you information about what’s around the sensor.”

Event attendees gather around a sedan outfitted with a spinning LiDAR sensor. (Photo by Micheal Foley, MnDOT)
Event attendees gather around a sedan outfitted with a spinning LiDAR sensor. (Photo by Micheal Foley, MnDOT)

Davis and his fellow researchers have outfitted a sedan with special LiDAR equipment and other technology that is capable of capturing a 360-degree, 3-D view of a scene in real time.

“We use the car as a test bed,” Davis said. “We have a lot of different types of sensors on the car that we use for the different projects that we’re working on. Right now we have a LiDAR sensor on top. Sometimes we have a high-accuracy GPS receiver in there. We have a cellular modem. We have a handful of inertial sensors. So it’s a lot of different stuff that we use to cater to the application.”

For his presentation, Davis showed the attendees some of the data his team had already collected.

Davis presents data that shows the LiDAR-equipped sedan moving along a roadway. (Photo by Micheal Foley, MnDOT)
Davis presents data that shows the LiDAR-equipped sedan moving along a roadway. (Photo by Micheal Foley, MnDOT)

“We showed a handful of pre-collected data at a handful of intersections around Rochester and Minneapolis,” Davis said. “What it shows is the point cloud collected by the sensor – just the raw point cloud with no post-processing done. In that information you can see people moving through it, cars moving through it, buses and light rail trains.”

Event attendees move around the sedan to see how the LiDAR sensor views them. (Photo by Micheal Foley, MnDOT)
Event attendees move around the sedan to see how the LiDAR sensor views them. (Photo by Micheal Foley, MnDOT)

After the presentation, Davis led the group to the parking lot for a close-up look at the technology and how it collects data and displays that data in real time. Le Sueur County GIS manager Justin Lutterman was among those who could envision possible applications for LiDAR.

“It’ll be interesting to see where this can go,” Lutterman said. “I’m sure the private industry will take off with this and emergency management, or the sheriffs and ambulances, would appreciate this kind of technology on their vehicles for a situation they might have to recreate. Roads and traffic designers  would be able to monitor their resources, pavements, traffic counts and things like that.”

Over the coming months, researchers will gather more data to develop a workshop for county personnel interested in learning more about LiDAR and how it can be applied in their transportation systems.

“The next steps for this project are to collect some data with the car at intersections. Then we can use that information to fine tune our algorithms,” Davis said. “What the algorithms are going to do is take that raw data and give us useful information, like the number of cars, or the time a car passes through an intersection. That all feeds into the workshop we’re developing. The workshop is going to be for county GIS workers, traffic engineers and county engineers who are interested in learning about these technologies.”

New video highlights how U of M transportation research makes a difference

CTS aired a new video—”How does University of Minnesota research make a difference?”—at its Annual Meeting and Awards Luncheon on April 6.

The video highlights a variety of U of M research initiatives from 2014-2015. Projects featured focus on hardier roadside grasses, tribal transportation safety, left-turn safety, maximizing system performance, clear roads in winter, well-rested truckers, increased transit ridership, more efficient buses, safer teen drivers, understanding travel behavior, better asphalt pavements, and healthy lakes and rivers.

Winter seminars highlight research on work-zone safety, culvert design, and more

Join us in person on the U of M campus or tune in online to the CTS winter research seminars. The seminars will highlight a sampling of the latest transportation research at the U of M.

Here’s this year’s seminar schedule:

Each seminar will be held in Room 50B at the Humphrey School of Public Affairs. Or, if you can’t make it in person, you can watch the seminars live online or view recordings posted after the events. For details about the live broadcasts, see the individual seminar web pages.

There’s no cost to attend, and each seminar qualifies for one Professional Development Hour.

Hope to see you there!

MnDOT, Alabama center team up for national pavement research

The nation’s two largest pavement test tracks are planning their first-ever co-experiments.

The Minnesota Department of Transportation’s Road Research Facility (MnROAD) and the National Center for Asphalt Technology (NCAT) began discussing a formal partnership last year and have now asked states to join a pair of three-year research projects that will begin this summer.

Representatives of the test tracks are meeting next week in Minneapolis at the 19th Annual TERRA Pavement Conference. They said the partnership will develop a national hot mix asphalt cracking performance test and expand the scope of existing pavement preservation research at the NCAT facility in Auburn, Alabama, to  include northern test sections in Minnesota.

MnROAD plans to build test sections at its facility and also off-site on a low- and high-volume road, which may include concrete test sections if funding allows. These Minnesota test sections will supplement 25 test sections built by NCAT on an existing low-volume haul route in 2010 and an off-site high-volume test road planned for this summer in Alabama to assess the life-extending benefits of different pavement preservation methods. Both agencies have also been developing performance tests to predict the cracking potential of asphalt mixes, and they will now work together on that research as well.

“We will collect and analyze the data in similar ways, and I think we’ll have a greater appeal nationally, as we cover a range of climate conditions,” said MnROAD Operations Engineer Ben Worel.

Participation in the pavement preservation study is $120,000 per year for the initial research cycle, which will drop to $40,000 after three years; the cracking study will run three years at $210,000 per year.  Alabama will be the lead state for this effort.

State departments of transportation are asked for commitment letters this month if they are interested in joining either study, even if they do not have SP&R (State Planning and Research) dollars available at the time. Participating agencies will get to design the scope of the research and be kept advised of the ongoing findings, so they can benefit early from the project. Initial planning meetings will be done through a series of webinars in March and April of this year with participating agencies.

At a January 8 webinar, speakers said the research will help states determine how long pavement preservation treatments will last.

“Many DOTs have really well-designed and well-thought-out decision trees, where they can take pavement management data and end up with a rational selection of pavement alternatives. But the issue of extending pavement life is the really big unknown, because references provide a broad range of expected performance,”  NCAT Test Track Manager Buzz Powell said.

Another benefit is that states can learn how pavement treatments hold up in both hot and cold climates.

“It’s 14 degrees right now in Mississippi. It rains about every three days, freezes and then thaws,” said Mississippi Chief Engineer Mark McConnell. “So we need to know how pavement preservation is going to work in the north as well.”

For additional information, contact Ben Worel (ben.worel@state.mn.us) at MnROAD or Buzz Powell (buzz@auburn.edu) at NCAT.

mnroad_ncat
Aerial views of the pavement test tracks at MnROAD (left) and NCAT (right).