Tag Archives: county

Guidebook helps cities and counties choose tools for managing fleets

Snowplows and other winter maintenance vehicles clearing roads during a nighttime snowstorm.

Managing a fleet of trucks, heavy equipment, and other vehicles challenges road agencies large and small. While large agencies like MnDOT use software and specialized administrators to manage fleet management systems electronically, city and county agencies often do not. For some small agencies, fleet management may fall to a shop mechanic or two.

In a recent project from the Local Road Research Board’s Research Implementation Committee, researchers identified the fleet management needs of city and county agencies and reviewed various cost-effective tools that could help these agencies make fleet management decisions. They then developed a guidebook for local agencies that addresses the tools and methods needed to manage fleets effectively.

“The guidebook provides the benefits of fleet management, a comparison of various program features and attributes, and a contact for more information about each program,” says Guy Kohlnhofer, county engineer, Dodge County, and the project’s technical liaison.

Fleet Management Tools for Local AgenciesFleet Management Tools for Local AgenciesFleet Management Tools for Local AgenciesFleet Management Tools for Local AgenciesFleet Management Tools for Local Agencies
Fleet Management Tools for Local Agencies

The guidebook—Fleet Management Tools for Local Agencies (2017RIC01)—includes a matrix comparing the eight most widely used fleet management software tools among Minnesota agencies. Costs, equipment needs, tracking features, financial analysis applications, and other attributes are reviewed. Case studies of agencies that use spreadsheets, software, and specific fleet replacement strategies are also included.

Three approaches to fleet replacement planning are presented in the guide. “You may have a vehicle that has been driven 300,000 miles and needed little maintenance, while another vehicle has been driven 100,000 miles and has needed a lot of maintenance,” says Renae Kuehl, senior associate, SRF Consulting Group, Inc., one of the co-authors. “We provide three models to determine when you should replace each.”

One of the findings of the project is that spreadsheets are effective and widely available tools for managing fleets. They are easy to tailor to local needs and fleets, are well understood by most computer users, are part of most office software suites, and work well for small data sets. Disadvantages, however, include limitations in reporting features, easy corruptibility of data, and inconsistent data entry among users.

In contrast, fleet management software offers easy report generation; software linkage to fuel, financial, and other software systems or modules; secure and consistent data; and interagency shareability. However, these tools can be expensive. Software costs for managing fleets average almost $36 per vehicle, and annual support costs average about $18 per vehicle. Other disadvantages include the need for training and internet accessibility.

This article originally appeared in the September issue of the LTAP Technology Exchange 

Applying LiDAR to county transportation systems

A handful of county highway department employees in the Rochester area gathered recently at the Olmsted County Public Works Service Center for a presentation and live demonstration by University of Minnesota Research Fellow Brian Davis about his team’s work involving light detection and ranging – or LiDAR.

“LiDAR is like radar, but with light,” Davis said. “It gives you information about what’s around the sensor.”

Event attendees gather around a sedan outfitted with a spinning LiDAR sensor. (Photo by Micheal Foley, MnDOT)
Event attendees gather around a sedan outfitted with a spinning LiDAR sensor. (Photo by Micheal Foley, MnDOT)

Davis and his fellow researchers have outfitted a sedan with special LiDAR equipment and other technology that is capable of capturing a 360-degree, 3-D view of a scene in real time.

“We use the car as a test bed,” Davis said. “We have a lot of different types of sensors on the car that we use for the different projects that we’re working on. Right now we have a LiDAR sensor on top. Sometimes we have a high-accuracy GPS receiver in there. We have a cellular modem. We have a handful of inertial sensors. So it’s a lot of different stuff that we use to cater to the application.”

For his presentation, Davis showed the attendees some of the data his team had already collected.

Davis presents data that shows the LiDAR-equipped sedan moving along a roadway. (Photo by Micheal Foley, MnDOT)
Davis presents data that shows the LiDAR-equipped sedan moving along a roadway. (Photo by Micheal Foley, MnDOT)

“We showed a handful of pre-collected data at a handful of intersections around Rochester and Minneapolis,” Davis said. “What it shows is the point cloud collected by the sensor – just the raw point cloud with no post-processing done. In that information you can see people moving through it, cars moving through it, buses and light rail trains.”

Event attendees move around the sedan to see how the LiDAR sensor views them. (Photo by Micheal Foley, MnDOT)
Event attendees move around the sedan to see how the LiDAR sensor views them. (Photo by Micheal Foley, MnDOT)

After the presentation, Davis led the group to the parking lot for a close-up look at the technology and how it collects data and displays that data in real time. Le Sueur County GIS manager Justin Lutterman was among those who could envision possible applications for LiDAR.

“It’ll be interesting to see where this can go,” Lutterman said. “I’m sure the private industry will take off with this and emergency management, or the sheriffs and ambulances, would appreciate this kind of technology on their vehicles for a situation they might have to recreate. Roads and traffic designers  would be able to monitor their resources, pavements, traffic counts and things like that.”

Over the coming months, researchers will gather more data to develop a workshop for county personnel interested in learning more about LiDAR and how it can be applied in their transportation systems.

“The next steps for this project are to collect some data with the car at intersections. Then we can use that information to fine tune our algorithms,” Davis said. “What the algorithms are going to do is take that raw data and give us useful information, like the number of cars, or the time a car passes through an intersection. That all feeds into the workshop we’re developing. The workshop is going to be for county GIS workers, traffic engineers and county engineers who are interested in learning about these technologies.”