Category Archives: Traffic and Safety

CTS Webinar: A New System to Report School Bus Stop-Arm Violations 

Wednesday, December 10, 2025
11:30 a.m.–1:00 p.m. CST
Zoom Virtual

School bus stop-arm violations by motorists pose a serious risk to children. A new University of Minnesota study investigated the existing violation reporting ecosystem, finding issues like underreporting, underenforcing, and significant workflow inefficiencies and barriers across all stakeholder groups.

To address these systemic barriers, study researchers concluded that a centralized statewide online portal is needed to streamline communication, simplify data access, and standardize reporting. They also provided near-term recommendations until this comprehensive solution can be developed.

Join this webinar to learn about the research findings and proposed short- and long-term recommendations for improving the reporting system, with the goal of making bus stops safer for children across Minnesota and beyond

Continue reading CTS Webinar: A New System to Report School Bus Stop-Arm Violations 

Human behavior insights are driving transportation safety forward

Reprinted from CTS News Catalyst, September 11, 2025

To better understand how roadway crashes can be prevented, it’s essential to explore the human behaviors that contribute to them. This objective is core to the work of the U of M’s Human Factors Safety Laboratory (HFSL). Research Associate Professor and CTS scholar Nichole Morris, who directs the lab, outlined its mission and impact in a recent Toward Zero Deaths (TZD) webinar highlighting Minnesota’s traffic safety research ecosystem. 

Minnesota TZD is the state’s cornerstone traffic safety program, employing an interdisciplinary approach to reducing traffic crashes, injuries, and deaths on the state’s roads. CTS partners with TZD to provide program administration, event coordination, and communications.

The HFSL brings together behavioral scientists and engineers dedicated to reducing roadway and occupational injuries and fatalities. They combine research on human behavior with the design and testing of user-centered systems to create solutions that work better for everyone.

“Human factors is the intersection between people and systems,” Morris explained. From in-vehicle technologies and roadway signage to partnerships with larger organizations such as law enforcement, transportation systems involve a wide range of human-system interactions.

Four research tracks shape the lab’s work:

  • Crash reporting. Although projects often intersect, crash reporting is foundational to the other research tracks. Morris refers to it as the lifeblood of transportation safety—without crash data, researchers don’t know what’s working and what isn’t. In one of its more consequential projects, the HFSL helped rebuild the front end of MNCrash—an application designed for law enforcement to document and report crashes. In close collaboration with the Minnesota Departments of Transportation and Public Safety as well as multiple law enforcement agencies, the HFSL team helped to streamline the user experience and improve data completeness and accuracy. Since deploying the updated version in 2016, MNCrash has been adopted by all law enforcement agencies across Minnesota. It’s featured in the sixth edition of the USDOT’s Model Minimum Uniform Crash Criteria and has become the national standard for crash reporting.
  • Maintenance and work-zone safety. In one project, leveraging the expertise and methods gained from MNCrash, the lab collaborated with MnDOT and maintenance workers on a streamlined app to make documenting work-zone intrusions easier. After its launch in 2022, the team continued work, using low-cost sensors and radar to help reduce select work-zone driving speeds in real time.
  • Pedestrian and non-motorist safety. The Stop for Me campaign, a collaboration with MnDOT, St. Paul, Ramsey County, and Western Michigan University, has been adopted in communities across Minnesota. The campaign—which combines enforcement and engineering treatments to improve yielding at crosswalks—has inspired similar efforts in more cities around the country. Other projects include studies on dedicated right-turn lanes and temporary and permanent pedestrian infrastructure to reduce conflicts between drivers and pedestrians.
  • Infrastructure and signage. The lab’s work on J-turns, which have proven effective at reducing fatal crashes, has helped to identify and address several navigational errors drivers may make when first encountering this type of intersection. The researchers have found that poor or confusing first experiences with J-turns can lead to negative community perceptions and result in pushback on J-turn implementation. The research has found specific pavement markings to help guide drivers and facilitate successful use of J-turns—leading to fewer crashes and better driver experiences.

Morris emphasized that investment in sound research methods and collaborations across partner institutions, organizations, and communities is what creates successful research outcomes. While studies may yield results in the moment, she says investing in methodology is what really carries the work forward. The HSFL’s work continues to inspire other states and agencies, Morris added.

—Krysta Rzeszutek, CTS digital editor

Related research from Nichole Morris

Increasing School Bus Stop-Arm Compliance

A significant number of school bus stop-arm violations occur every day throughout the country. In Minnesota, violation and citation data suggests these incidents are grossly underreported and underenforced due to a time-consuming reporting and enforcement process. This project examined current processes and recommended improvements to encourage higher rates of reporting and enforcement.

Continue reading Increasing School Bus Stop-Arm Compliance

Evaluating the Friction of Pavement Markings and Colored Pavement

Pavement markings make travel safer for all road users. However, the material used for retroreflectivity can be slicker than the surrounding pavement. To maximize the safety of bicyclists, motorcyclists and pedestrians, MnDOT and local agencies explored the friction values of different marking materials. Project results produced valuable information on relative friction between pavement and marking materials and, importantly, identified effective testing tools to evaluate and compare products.

Continue reading Evaluating the Friction of Pavement Markings and Colored Pavement

Impacts of Automated Vehicle Feature Integration

Automated vehicle (AV) features such as adaptive cruise control could significantly increase driver safety and mobility. But in some circumstances, these features can alter vehicle movement and spacing, and interfere with traffic flow. This project analyzed the integration of varying levels of AVs with human-driven vehicles (HVs) and the impact on ramp meter operations to measure the effects and identify potential solutions and modifications.

Continue reading Impacts of Automated Vehicle Feature Integration

Enhancing Safety for Pedestrians and Bicyclists at Roundabouts

Compared to traditional intersections, roundabouts have been proven to decrease serious crashes. However, because drivers yield rather than stop upon entering roundabouts and at crosswalks, public concerns about pedestrian and bicyclist safety remain. Research and field evaluations into driver yielding and speed behaviors generated insights to guide local transportation agencies and MnDOT to further enhance pedestrian safety at roundabouts.

Continue reading Enhancing Safety for Pedestrians and Bicyclists at Roundabouts

TZD Traffic Safety Hotdish: Research in Action—Perspectives from Minnesota’s Traffic Safety Research Ecosystem

July 16, 2025
1:00–2:15 p.m. Central
Virtual via Zoom

Join us as our very own “Roads” Scholars share more about their recent traffic safety research. Presenters from the University of Minnesota and Minnesota Department of Transportation (MnDOT) will share findings from recent projects and talk about the collaborations that drive traffic safety research throughout Minnesota.

Speakers

  • Jackie Jiran, PE—MnDOT
  • Max Moreland, PE, PTOE—MnDOT
  • Nichole Morris, PhD—University of Minnesota
  • Mark Wagner, PE—MnDOT
  • Kyle Shelton, PhD—University of Minnesota; Moderator

Registration

The webinar is free to attend, but registration is required. Once you have registered, you will receive an email confirmation with a Zoom link. The link should not be shared with others; it is unique to you.

Credit

Attendees are eligible for 1.25 Professional Development Hours (PDHs). Download the PDH credit form (PDF) for your records.

For complete information, go to TZD Traffic Safety Hotdish.

Pavement Markings to Support Automated Vehicles

Automated vehicles (AVs) using advanced driver assistance systems depend on pavement markings to accurately track roadway lanes. While MnDOT continues to ensure human drivers easily and effectively detect and interpret various pavement markings, the agency also wanted to understand marking designs and characteristics that support AV functions. Field observations in different locations, during the day and at night, using different data collection methods allowed researchers to evaluate the impact of various pavement marking properties on AV lane-keeping functions. Results support MnDOT in producing pavement marking guidance that is responsive to changing needs.

Continue reading Pavement Markings to Support Automated Vehicles

An Evaluation of Vehicle Identification Technology

To successfully manage the state road network, MnDOT needs a thorough understanding of the number and type of vehicles on the road. To obtain this information, the agency upgraded existing inductive loop infrastructure at select locations to enable these sensors to collect vehicle classification data. This project evaluated the accuracy of the inductive loop upgrade and its life cycle costs to determine its viability for future use on Minnesota roads.

Continue reading An Evaluation of Vehicle Identification Technology

Refining Max-Pressure Traffic Signal Control to Improve Traffic Flow

Effective traffic signal control technologies facilitate optimal traffic flow and travel time. Building on previous research, this project made significant progress toward field implementation of a novel adaptive signal control technology. This research phase demonstrated the max-pressure traffic signal algorithm can successfully integrate into Hennepin County traffic signal hardware and respond to changing traffic conditions in real time, providing confidence to move to the next step and test the system in the field. 

Continue reading Refining Max-Pressure Traffic Signal Control to Improve Traffic Flow