All posts by Matt

Matt is an Information Officer working for the Materials Lab, MnROAD, and Research Services all within the Minnesota Department of Transportation. He lives in Minneapolis, Minn.

Geotextile research at MnROAD

Geotextiles are synthetic polymer materials used to improve the performance of roadways. As discussed in this 2011 technical summary, geotextiles facilitate filtration and water drainage, improve the integrity and functioning of base materials, and provide a stable construction platform over soft or wet soils. These improvements can benefit both the cost-efficiency and longevity of pavements.

Geosynthetic materials have been used throughout Minnesota, and can be found in both reconstructed and new roadway projects. The use of geotextiles as a separator layer under concrete overlays, however, has had limited documentation in Minnesota and other cold weather climates. MnROAD‘s recent dedication of several test cells to this purpose will determine the performance of this application of geotextiles, with the goal of improving its applications on other Minnesota roadways.

The new test sections, designated as Cells 140 and 240, consist of a very thin, 3-inch concrete overlay over an existing 7-inch concrete pavement constructed 20 years ago. Some unique features of the design include the use of a fiber-reinforced concrete mix, two different thicknesses of the nonwoven geotextile, and the use of a special type of glue, rather than nails, to fasten it to the existing concrete before paving.

The fabric and fiber used in the concrete mix were supplied through a public-private partnership with Propex Geotextile Systems. The results of this study, along with other unbonded overlays constructed at MnROAD and around the country, will be incorporated into a new national pooled fund project — TPF 5-(269) — led by MnDOT. This project will develop an improved mechanistic design procedure for unbonded overlays.

A second application being demonstrated at MnROAD is the use of a geosynthetic drainage system under several dowel bar baskets in new concrete pavement test section. Minnesota has historically used a dense-graded base layer under concrete pavements to provide a stable foundation and construction platform. However, this material drains very slowly, and traps moisture within the joints, leading eventually to significant distress (See Effect of Drainage on the Performance of Concrete Pavement Joints in Minnesota.) This application will compare the use of the geotextile drainage material placed under both sealed and unsealed joints, as well as a control joint without the drainage material.

Construction kickoff at MnROAD, the state’s high-tech road research facility (updated)

*Editor’s note: This article was updated 6/11/13 with additional information provided by MnROAD engineers.

You’re probably aware that MnDOT recently kicked off its 2013 construction season, comprising $1.1 billion in new transportation investments in more than 300 projects across Minnesota. What you might not know is that another MnDOT construction season has begun at MnROAD, the department’s unique, high-tech pavement test facility located near Albertville, Minn.

MnROAD serves as a proving ground for innovative pavement designs, equipment and construction techniques that help transportation professionals all over the world strengthen roads, cut costs, and reduce construction times. It has a two test tracks — a 3.5- mile mainline carrying “live” traffic and a 2.5-mile closed-loop, low-volume roadway — that are used for state, university and private industry pavement research. These tracks are made up of dozens of individual “cells,” which are unique stretches of pavement each representing several research projects.

This summer, several test cells are being torn up and repaved. Cell 40, a 20-year-old concrete pavement, will receive an innovative 3-inch thick unbonded concrete overlay.  To increase the capacity of such a thin overlay , a fiber-reinforced concrete mixture will be used.  To separate and cushion the thin overlay from the existing concrete, two different thicknesses of nonwoven geotextile fabric will be laid.  This will help MnROAD researchers to understand how much cushioning is needed, as well as the drainage capacity of each fabric.  Fabric interlayers are gaining popularity as an alternative to asphalt interlayers.

Thin concrete overlays of asphalt, commonly known as whitetoppings, will also be used to reconstruct Cells 60-63.  Similar to Cell 40, fiber reinforced concrete will be used to test its benefit in supplementing load transfer at joints and across cracks.  Pavement built with this material will be strengthened by the fiber, prolonging a road’s lifespan, and potentially allowing for thinner concrete pavements.  Findings from Cells 40 and 60-63 support the ongoing development of improved design procedures for concrete overlays.

Cell 13 reconstruction is using recycled concrete aggregate provided by the contractor’s stockpile from other pavement projects. The concrete from the stockpile will be included in the concrete mix — a new practice to understand how to better recycle paving materials and ascertain the cost and benefits of this practice. Cell 13 will also be testing two innovative types of preformed joint sealants, and several joints drained by geotextile drains.

Construction updates are available on the MnROAD website as well as information regarding current research projects.

Image from MnROAD's 2013 construction kickoff.
Removing concrete in MnROAD Cell 13.