Tag Archives: separated bike lanes

New Project: Guidance for Separated/Buffered Bike Lanes With Delineators

New research has started that will provide needed guidance for the design of separated bike lanes, which are rapidly growing in popularity. The two-year Minnesota Local Research Board-funded study, which is being performed by the University of Minnesota, will identify the safety, cost and accessibility attributes of different lane designs and produce a technical memorandum with design guidance for transportation planners.


Separated bicycle lanes (SBLs) are a bicycle facility that employs both a paint and vertical element as a buffer between vehicle traffic and bicycle traffic.

In 2016, the City of Minneapolis increased the total mileage of separated bike lanes in the city from 5.4 to 9.4 miles with plans to increase that to 30 miles by 2020. While many other cities around the U.S. are in the process of installing separated bike lanes as part of their non-motorized transportation networks, research about them has not kept pace.

The Federal Highway Administration’s Separated Bike Lane Planning and Design Guide  identified several gaps in existing research, including the effects of SBLs on vehicle traffic, the preferred speed and volume thresholds to recommend SBLs, and the differences in safety between one- and two-way SBLs.

Despite safety being a major concern with SBLs, the guide states that “there are no existing studies that have satisfied best practices for analyzing the safety of SBLs.” The guide goes on to caution that even in cases where research on the safety or operational effects of SBLs does exist, “much of the highest quality research comes from outside the U.S.” The FHWA guide also lists cost as a gap in knowledge about SBLs, saying “few benchmarks exist for separated bike lane costs, which vary extensively due to the wide variety of treatments and materials used.”

This research project will provide a thorough synthesis of current research and guidelines and a comprehensive analysis of the impacts of different midblock bike lane designs to help Minnesota-based agencies make data-driven design and planning decisions. Design variables include delineator type and spacing, land and buffer widths, and one- vs two-way bike lanes. Impacts that would be evaluated include installation, maintenance, and user costs as well as safety and facility usage.

Two lane road with bicycle lanes on both sides of the road with cars on the road and cyclists in the bike lanes.


When considering installing SBLs, many aspects including impacts on both bicycle traffic and other types of traffic (pedestrians, passenger cars, delivery trucks, etc.) must all be considered. However, much of this information is unavailable. By providing a comprehensive repository for the relevant data on the numerous SBL design options, this project will allow engineers and policy-makers to make more informed decisions regarding bicycle infrastructure installations and improvements. Access to this sort of hard data will aid in the process of performing will aid in the prioritization of options for bike facilities thereby reducing the waste of funds on unneeded or unaffordable projects.


The tasks of the research project include:

  • Conduct a thorough literature review to identify any gaps in the current research.  Examples of this might include the effects of SBLs on all road users, frequency of bicycle and vehicle violations for various SBL designs, recommended speed and volume thresholds for installation, the costs associated with SBLs, or the differences in safety between one- and two-way SBLs.
  • Conduct research such as observational field studies, crash record analysis, synthesis of the results of other studies, road user surveys, review of previous project budgets, bicycle facility repair record analysis, municipal records of complaints and violations, or some combination thereof.
  • Develop a list of options for the design of multi-modal facilities and the respective impacts of those options based on findings from the field studies. This could include maintenance costs, user costs and safety impacts.

By providing transportation planners, engineers, and other practitioners new information on the impacts likely to be associated with different designs, the practitioners will be in a better position to both choose among designs and mitigate potential adverse effects of those designs. The list of design options and associated impacts will be summarized in a technical memorandum with a more thorough presentation in the project final report.

Watch for new developments on this project.  Other Minnesota transportation research can be found at MnDOT.gov/research.