Category Archives: Multimodal

Urban Rapid Transit Reduces Traffic on Nearby Roads

Light rail transit and bus rapid transit in the Twin Cities provide urban residents with fast, safe and reliable transportation. These transitways have the potential to attract more riders and further reduce automobile traffic, relieving the growth of congestion on nearby roads as people decide to be transitway passengers rather than motorists. 

Continue reading Urban Rapid Transit Reduces Traffic on Nearby Roads

Local Guidance for Bicycle Facility Design

A quick reference guide is now available to help local agency planners and designers select the best bicycling facilities for their system. This guide walks local agencies through the selection and design process, and directs users to specific places within design manuals for details on facility questions.

Continue reading Local Guidance for Bicycle Facility Design

Richfield “Sweet Streets” Improve Quality of Life, Traffic Times Citywide

Complete streets is an approach to road planning and design that considers and balances the needs of all transportation users.

Richfield, Minnesota, located south of Minneapolis, began a Complete Streets redesign in 2013. So how did it turn out? A retrospective study has found that while construction impacts remain on the minds of business owners and residents, Richfield’s program has improved community life and traffic times citywide. Safety and multimodal use are expected to improve.

Continue reading Richfield “Sweet Streets” Improve Quality of Life, Traffic Times Citywide

New Project: Assessing the Economic Effects of Context Sensitive Main Street Highways in Small Cities

Complete Streets is a transportation policy and design approach that requires streets to be planned, designed, operated, and maintained to enable safe, convenient, and comfortable travel and access for users of all ages and abilities regardless of their mode of transportation.

Continue reading New Project: Assessing the Economic Effects of Context Sensitive Main Street Highways in Small Cities

Resources Help Local Agencies Plan for CAV Roadway Needs

In a recently completed project, funded by the Local Road Research Board, researchers developed a reference tool and compiled a literature review that local agencies could use to anticipate the infrastructure needs of connected and automated vehicles. Agencies can use these resources to plan for infrastructure upgrades and maintenance activities.

Continue reading Resources Help Local Agencies Plan for CAV Roadway Needs

Impact of Arterial Bus Rapid Transit on Traffic and Users

Video and statistical analyses showed that arterial bus rapid transit (ABRT) along Snelling Avenue in Minneapolis-St. Paul had no significant impact on traffic volume and wait times at intersections. Survey results demonstrated that users prefer the A Line over local bus service and consider it roughly equivalent to express bus, light rail and commuter rail service. Though ABRT has not converted automobile drivers to transit riders, users enjoy its easy payment format, cleanliness, route service and convenience. This study also provided recommendations for future ABRT line design considerations.

Continue reading Impact of Arterial Bus Rapid Transit on Traffic and Users

Bus–Highway Connections Make Transit More Competitive With Driving

Researchers developed a method for associating travel times and travel costs with transit mobility. In an evaluation of bus–highway system interactions, investigators found that park-and-ride lots and managed lanes put suburban and walk-up urban transit options on equal footing. Bus–highway system interactions improve access to job locations and have improved transit access to job sites by about 20 percent compared to automobile access. When wage-related costs are included, the benefit of automobile use over transit use diminishes significantly.

Continue reading Bus–Highway Connections Make Transit More Competitive With Driving

New Project-Quantifying the Impacts of Complete Streets: The Case of Richfield

Complete Streets is a transportation policy and design approach that requires streets to be planned, designed, operated, and maintained to enable safe, convenient and comfortable travel and access for users of all ages and abilities, regardless of their mode of transportation. A newly funded research project aims to demonstrate the economic and non-economic benefits of Complete Streets in the city of Richfield, which has been active in reconstructing several previously vehicle-oriented roads to allow for safe travel by those walking, cycling, driving automobiles, riding public transportation, or delivering goods.

By measuring the impacts of pedestrian- and bike-related improvements in Richfield, this Minnesota Local Road Research Board-funded study hopes to help guide future transportation investments for building sustainable and safe urban environments.

This analysis will include four closely related steps:

  • First, University of Minnesota researchers will select suitable improvement sites in Richfield to study and collect project information, including project maps, description of complete street features and GIS files at the parcel level before and after the project.
  • Identify economic and measurable non-economic benefits. The university will work with the City of Richfield to identify possible economic benefits (such as increased property value) and other measurable benefits (such as public health benefits associated with pedestrian or cycling activities) of the Complete Streets projects.
  • Estimate economic benefits, such as increased housing value or as additional business activities.
  • Lastly, researchers will quantify and monetize non-economic benefits, such as public health or environmental benefits related to pedestrian or cycling activities. Data about benefit indicators will be collected through survey or interview. These benefits will then be monetized using common value parameters identified from the literature.

MnDOT Explores the Use of a Unified Permitting Process for Oversize/Overweight Loads

Researchers produced a proof-of-concept for developing a one-stop permitting process that would allow commercial haulers to plan a travel route and secure all required permits from a single source. MnDOT is working to develop a first-of-its-kind, unified permitting process to consolidate the requirements of every jurisdiction in the state into a single, quick-response platform that meets the needs of haulers.

“From a hauler’s perspective, the permitting process can be very cumbersome. Each agency’s application is different as are the general provisions that haulers need to follow,” said Renae Kuehl, Senior Associate, SRF Consulting Group, Inc.

“As carriers, we’re trying to do our due diligence in getting permits. But the current process can lead to significant safety and legal risks,” said Richard Johnson, Transportation Manager, Tiller Corporation.

What Was the Need?

Hauling oversize or overweight freight on Minnesota’s roadway system—highways, county roads, township roads and city streets—requires approval by each governing authority along the route. Roadway managers must review hauler travel plans to make sure size and weight limits for vehicles and loads will not endanger roadway facilities, hauler equipment and personnel before issuing the over-size or overweight permit.

Any single hauling route may require permits from multiple roadway authorities, each with different application procedures and response times. Some governing bodies, MnDOT among them, issue these permits online and can turn them around in minutes. Other agencies issue permits by mail, fax or email, which can take several days.

Haulers, however, may not have time to wait for a permit. If equipment breaks down at a loading site, for example, replacement equipment is needed immediately to meet contract deadlines and avoid paying labor costs for idle workers. A construction emergency may also demand large equipment be towed to a site. In situations like these, haulers often make the trip without appropriate permitting, accepting the legal and safety risks.

What Was Our Goal?

To simplify the permitting process, Minnesota local agencies would like to develop an online permitting application process that would allow permit-seekers to determine routes based on their vehicle and load size, and secure all necessary permits at one time. This research, the first phase of a multiphase study, aimed to determine the feasibility of a one-stop, unified permitting process by studying its technological and operational needs and gathering input from various stakeholders.

What Did We Do?

Investigators worked with the Technical Advisory Panel (TAP) and a group of policy experts from county and state agencies, commercial haulers and consultants to identify audiences with a stake in a unified permitting process. During meetings in northern Minnesota and in the Twin Cities area, investigators and TAP members met with key stakeholders: haulers and representatives from industry organizations; seven MnDOT offices (including Freight and Commercial Vehicle Operations, Information Technology, Maintenance and Geospatial Information); Minnesota counties; the City of Duluth; the Duluth-Superior Metropolitan Interstate Council; Minnesota State Patrol; the State Patrol Commercial Vehicle Section; and a county sheriff’s office.

The research team identified the challenges and needs of each stakeholder and organized the concerns according to policy, process and technology. Then they explored solutions that would allow the development of a one-stop permitting process.

What Did We Learn?

Researchers determined that a unified permitting process is feasible. Policy issues include the need to standardize general provisions statewide, such as travel hours, insurance requirements and warning devices such as flagging needs. For example, currently the color of flags and lettering on banners vary from jurisdiction to jurisdiction; well-framed general provisions could make these requirements more uniform to serve multiple jurisdictions. The information required by each governing authority in its permit applications could also be normalized.

Process issues were about workflow. More than 80 percent of hauler requests are repeat-able: A commercial haul may be run on the same route with the same-size load three times a month for four months and may not require a full reapplication each time. Some agencies rely on paper, fax or emails to receive permit requests; others purchase permit-ting software; still others build their own software. These systems could be made more uniform so they could interact and share information among agencies.

Technology issues called for an interoperable system that could bring together geographic information system (GIS) capabilities and regulatory data that could be both received and shared. Mapping data could identify each permit required along a route being developed, and a portal could allow agencies to share information as well as allow permit-seekers to enter information and retrieve permits themselves. A portal could also integrate different software packages while offering information like Minnesota’s Gopher State One Call digging hotline.

What’s Next?

In Phase II of this project, which has already begun, researchers will develop a pilot portal that allows users to create route plans, identify permits needed and apply for all permits in one action. Investigators will test the platform with a three-county group. If this effort is successful, researchers will build a unified permitting process for use within all jurisdictions in Minnesota.

MnDOT is also enhancing its software for handling oversize/overweight permits and carrier credentials. Transportation Research Synthesis 1704 surveyed state agencies about current offerings.


This post pertains to the LRRB-produced Report 2017-26, “Oversize/Overweight Vehicle Unified Permitting Process (UPP) Phase I,” published August 2017. 

MnDOT Chooses EasyMile for Autonomous Shuttle Bus Project

ST. PAUL, Minn. – The Minnesota Department of Transportation chose EasyMile, a France-based company specializing in driverless technology, to lead its autonomous shuttle bus pilot project. MnDOT announced in June it will begin testing the use of an autonomous shuttle bus in a cold weather climate.

“We’re excited to partner with EasyMile to help MnDOT test autonomous technology,” said Jay Hietpas, MnDOT state traffic engineer and project manager. “Their expertise will help us learn how these vehicles operate in a winter weather environment so we can advance this technology and position MnDOT and Minnesota as a leader.”

EasyMile, which has a location in Colorado, has conducted driverless technology cold weather tests in Finland and Norway. Minnesota will be their first cold weather test site in the U.S. EasyMile will use its EZ10 electric shuttle bus that has already transported 160,000 people more than 60,000 miles in 14 countries. The shuttle was tested in various environments and traffic conditions. During these tests, the shuttle operated crash-free.

The shuttle operates autonomously at low speeds on pre-mapped routes. It can transport between six and 12 people.

Initially, it will be tested at MnROAD, which is MnDOT’s pavement test facility. Testing will include how the shuttle operates in snow and ice conditions, at low temperatures and on roads where salt is used.

Testing is scheduled to start in November and go through February 2018. The shuttle will also be showcased during the week of the 2018 Super Bowl.

Hietpas said 3M will also be a partner in the project so the company can research various connected vehicle concepts including sensor enhancement and advanced roadway safety materials. When optimized, these materials would aid in safe human and machine road navigation.


Read more about the autonomous shuttle bus pilot project:


Related MnDOT research: