Category Archives: Pedestrian

Smartphone app guides blind pedestrians through work zones (updated)

Each year, approximately 17 percent of road construction work zone fatalities nationwide are pedestrians.

At special risk are the visually impaired, who rely on walking and public transportation to get around.

A major challenge  for them is crossing the street — which is even more difficult if an intersection is torn up.

MnDOT has invested significant effort to accommodate pedestrians, particularly those with disabilities, in temporary traffic control situations. This includes requiring temporary curb ramps and alternative routes when a sidewalk is closed.

Researchers, funded by MnDOT, have now developed a cell phone application to guide blind pedestrians around a work-zone.

Illustration of Bluetooth beaconplacement at decision points around a work zone.
Illustration of Bluetooth beacon placement at decision points around a work zone.

Building on previous work to provide geometric and signal timing information to visually impaired pedestrians at signalized intersections, the smartphone-based navigation system alerts users to upcoming work zones and describes how to navigate such intersections safely.

The smartphone application uses GPS and Bluetooth technologies to determine a user’s location. Once a work zone is detected, the smartphone vibrates and announces a corresponding audible message. The user can tap the smartphone to repeat the message, if needed.

The federal government strongly encourages states to provide either audible warnings or tactile maps at work zones where visually impaired pedestrians are expected to be impacted.

“The smartphone application is a step in that direction,” said MnDOT technical liaison Ken Johnson. “It’s a way to see if this type of way-finding device would work.”

Since smartphone use is still limited, the state is also interested in special equipment that could relay the audible warnings at affected work zones.

“However, smartphone use is increasing in the general population, as well as with persons with disabilities, and there will likely be a day when it will be rare to not have a smartphone and this tool could meet road agency needs,” Johnson said.

Before developing the smartphone application, researchers surveyed 10 visually impaired people about their experiences at work zones and what types of information would be helpful in bypass or routing instructions.

The University of Minnesota research team, led by Chen-Fu Liao, tested the smartphone application by attaching four Bluetooth beacons to light posts near a construction site in St. Paul.

Additional research is now needed to conduct experiments with visually impaired users and evaluate system reliability and usefulness.

*Update 4/29/2014: Check out this story from KSTP on the app.

More information

Development of a Navigation System Using Smartphone and Bluetooth Technologies to Help the Visually Impaired Navigate Work Zones Safely — Final Report (PDF, 1 MB, 86 pages)

New guidelines developed for counting bike, pedestrian traffic

Image
Manual field counts require more labor than automatic technologies, but they can collect deeper data about demographics and helmet use. Both forms of monitoring are necessary to give a complete picture of bicycle and pedestrian traffic in the state.

To prepare for a multimodal future, state agencies must be able to plan and engineer a transportation system for all modes of transportation, including bicycle and pedestrian traffic.

The Minnesota Bicycle and Pedestrian Counting Initiative was launched to develop consistent methods for monitoring non-motorized traffic across the state. Researchers developed guidelines for manual counts using state and national examples, and they also created methods for extrapolating annual traffic volumes from short-duration automated counts, for integration into MnDOT’s vehicular count database program.

The guidance developed for manual counts includes forms, training materials, public information for passers-by, links to smartphone applications that provide counting locations and spreadsheets for reporting results.

MnDOT hosted six workshops and a webinar to introduce local officials to the initiative and recruit participants for pilot field counts. Researchers then analyzed how these field counts could be used with existing automated counts to extrapolate daily or annual data.

MnDOT has installed some of the very first automated counting equipment on a state road — Central Avenue NE in Minneapolis (on the bike lane) and Highway 13 in Eagan (on a shoulder). As of 2012, six agencies in Minnesota counted non-motorized traffic (annual reports are available from the city of Minneapolis and Transit for Livable Communities), and even though comprehensive data is not yet available, Minnesota is a leader in this type of monitoring with more than 1,000 manual count locations and 32 automatic count sites.

Because of Minnesota’s experience, researchers collaborated with the National Cooperative Highway Research Program’s national Methodologies and Technologies for Collecting Pedestrian and Bicycle Volume Data research project, due for release in 2014, and contributed to the Federal Highway Administration’s effort to update its Traffic Monitoring Guide to include a chapter on non-motorized traffic.

Learn more:

Bicycle and pedestrian research roundup

Judging by the response we get whenever we post anything bicycle- or pedestrian-related on MnDOT’s social media channels, people seem to be hungry for research into this area. We recently had several new reports arrive on the topic, and I thought I’d share them here for those who missed them, along with links to any related webinars or news articles.

The Minnesota Bicycle and Pedestrian Counting Initiative: Methodologies for Non-motorized Traffic Monitoring

This study examined ways of counting non-motorized traffic (bicycles and pedestrians), with the goal of helping planners and engineers better incorporate these modes into our transportation systems. The report discusses the pros and cons of various counting methodologies (i.e. manual field observation, active and passive infrared systems, magnetic loop detectors, etc.) and looks at how Minnesota agencies are using them. The project also included a webinar, workshops and a coordinated statewide pilot count in dozens of communities around the state.

Best Practices Synthesis and Guidance in At-Grade Trail-Crossing Treatments

At-grade trail crossings have frequently been the sites of bicycle, pedestrian and snowmobile crashes in Minnesota and throughout the nation. The goal of this document is to synthesize best practices observed statewide and nationally in order to provide engineers and other transportation professionals with guidance on safety treatment applications at trail crossings.

Minnesota’s Best Practices for Pedestrian/Bicycle Safety

This Local Road Research Board-funded guide is designed to be used as a resource to assist local agencies in their efforts to more safely accommodate pedestrians and bicyclists on their systems of roads and highways. It discusses the relative merits of a wide range of strategies to reduce crashes involving bicycles and pedestrians.

Complete Streets Implementation Resource Guide for Minnesota Local Agencies

In this project, investigators developed a guide to help local agencies implement Complete Streets programs, including sample policy language from agencies in Minnesota, systems for classifying roadways that are appropriate for use in context-sensitive planning and a worksheet to help develop specific project plans.

Bike, Bus, and Beyond: Extending Cyclopath to Enable Multi-Modal Routing

Researchers incorporated multimodal routing into the Cyclopath bicycle route-finding tool to allow users to find routes that combine biking and transit for journeys where biking alone is impractical. Increasing the percentage of trips made by methods other than cars is a MnDOT priority, and providing route information can help to make alternative transportation options more viable.

CTS fall research seminars begin September 26

This fall, CTS will offer five research seminars on transportation topics ranging from resilient communities to asphalt at low temperatures.

Seminars will be held every Thursday from September 26 through October 31 (except Oct. 17) on the U of M campus in Minneapolis. You can either attend in person or watch the live webcast of each seminar. Additional information is available on the CTS website.

Seminar schedule:

Ridership and Pedestrian Impacts of Transitways: A Case Study of Hiawatha Light-Rail Transit in Minneapolis

Following up on Nick’s post last week about transportation practitioners’ preferences for short research summaries, the Center for Transportation Studies recently published a two-page research brief highlighting results from a University of Minnesota study that explores the ridership and pedestrian impacts of the Hiawatha Line in the Minneapolis–St. Paul metropolitan region. The study compares the travel behavior of residents in the LRT corridor to those in similar corridors without LRT but with comparable bus service. It investigates the reasons why residents choose to live in the LRT corridor, the associations between transit use and residency in the LRT corridor, and the effects of LRT and the built environment on pedestrian travel.

Findings

mapp

The findings include:
  • Residents who lived in the Hiawatha Corridor when the light-rail transit (LRT) line opened increased their transit use substantially—a clear ridership bonus from LRT.
  • Residents who moved into the corridor after the LRT line opened use transit as often as new residents in similar urban neighborhoods without LRT.
  • When looking for a place to live, good transit service and job accessibility are important factors for both urban and suburban residents—ranked behind only housing affordability and neighborhood safety.
  • Residents choose to live near Hiawatha LRT stations because of their strong preference for transit access and quality.

Recommendations

To encourage transit use among station-area residents, the researchers recommend the following:

  1. Consider development potential when planning LRT routes and design a vibrant place rather than a traffic node to ensure a mix of activities and users.
  2. Create pedestrian-friendly connections between residential neighborhoods and rail stations.

Related links

About the Research
The research was conducted by Assistant Professor Xinyu (Jason) Cao and research assistant Jessica Schoner of the Humphrey School of Public Affairs at the University of Minnesota and funded by the Transitway Impacts Research Program (TIRP).

Free webinar July 9 on best practices for bicycle trail crossings

Intersections between trails and roadways can be dangerous places for bicyclists and pedestrians. Next week, MnDOT Research Services is offering a free webinar on a forthcoming manual designed to help make trail crossings safer.

On Tuesday, July 9, from 1:00 p.m. to 2:30 p.m. (CDT), University of Wisconsin—Madison Professor David Noyce will be conducting a workshop on his forthcoming handbook, “Decision Tree for Identifying Alternative Trail Crossing Treatments.” The project, funded by MnDOT and the Local Road Research Board, aims to identify current engineering state-of-the-practice for trail crossings and provide guidance as to appropriate crossing designs and vehicular and bicycle right-of-way hierarchies.

You can click on the link below at the specified date and time to watch the webinar. No registration is required.

http://mndot.adobeconnect.com/trailcrossing/

CTS Research Conference videos and presentations now available

If you weren’t able to attend the CTS Research Conference, or, if you simply want to check out presentations from other sessions, the videos of the keynote and luncheon speeches, as well as PPTs from most of the concurrent sessions, are now available on the CTS website. You won’t want to miss Minnesota Department of Health Commissioner Ehlinger’s tuneful take on the links between health and transportation and Elizabeth Deakin’s view of new ways to get around.

Bicycle and pedestrian counting initiative monitors nonmotorized traffic in Minnesota

In a continuing effort to better understand nonmotorized traffic patterns in Minnesota, researchers from the Humphrey School of Public Affairs have partnered with the Minnesota Department of Transportation (MnDOT) to develop guidelines and analyze information collected in bicycle and pedestrian traffic counts throughout the state.Image

The research team, led by Professor Greg Lindsey, aims to develop consistent methods for monitoring and assessing bicycle and pedestrian traffic that can be used in both permanent, automated traffic counts and short-term manual counts. The goal is to provide evidence for decision making that Minnesota cities have historically lacked, Lindsey says. “We’ll have practical, useful information about bike and pedestrian traffic that can help local jurisdictions as they plan and invest in infrastructure,” he says.

As part of the 18-month project, the research team created a set of tools and methods for short-duration manual counts of nonmotorized traffic, held training workshops, and organized a statewide counting effort involving 43 Minnesota municipalities last fall. The overall response was positive, Lindsey says, and some communities are already using their collected data to submit grant proposals for projects related to nonmotorized traffic.

In addition, Lindsey and his team have examined traffic information from six permanent counters on Minneapolis trails. The continuous counts collected at these locations help the researchers understand traffic patterns and the factors that affect them, Lindsey says. For example, the team found that bike and pedestrian traffic vary by trail type, time of day, day of week, and season.

“Once we know the patterns at permanent sites, we can develop factors that help us expand short-term counts from other locations with similar conditions,” Lindsey says. The factors could be used to estimate anything from total daily traffic to annual traffic, as long as the short-term count location is similar to an existing model.

Based on the overall results of the study, the research team developed recommendations for MnDOT. These include continuing to coordinate statewide short-term field counts, demonstrating the feasibility of automated counting technologies, and beginning to integrate nonmotorized and vehicular traffic databases.

Based on these recommendations, MnDOT is moving forward with a new project that will collect more short- and long-duration counts throughout Minnesota, says Lisa Austin, ABC Ramps coordinator at MnDOT. The next phase of work aims to collect counts for pedestrians on sidewalks, bicyclists on shoulders and in bike lanes, and pedestrians and bicyclists on multiuse trails. MnDOT plans to install more permanent, automated counters in suburban and midsize cities and to conduct additional manual counts in smaller cities around the state, Austin says.

“We’re really excited that this bike and pedestrian counting project is moving into wider implementation,” Austin says. “This next phase will help us see which automated counting technologies work well and make recommendations for moving forward on a broader scale.”

Reprinted from the CTS Catalyst, May 2013.

U of M transportation research highlights video

U of M transportation research highlights during 2012-2013 include a smartphone app for visually impaired pedestrians, pedestrian and bicyclist safety in roundabouts, methods for counting bike and pedestrian traffic on trails, and a filter that takes phosphorous out of storm water.