Category Archives: Mode

MnDOT Explores the Use of a Unified Permitting Process for Oversize/Overweight Loads

Researchers produced a proof-of-concept for developing a one-stop permitting process that would allow commercial haulers to plan a travel route and secure all required permits from a single source. MnDOT is working to develop a first-of-its-kind, unified permitting process to consolidate the requirements of every jurisdiction in the state into a single, quick-response platform that meets the needs of haulers.

“From a hauler’s perspective, the permitting process can be very cumbersome. Each agency’s application is different as are the general provisions that haulers need to follow,” said Renae Kuehl, Senior Associate, SRF Consulting Group, Inc.

“As carriers, we’re trying to do our due diligence in getting permits. But the current process can lead to significant safety and legal risks,” said Richard Johnson, Transportation Manager, Tiller Corporation.

What Was the Need?

Hauling oversize or overweight freight on Minnesota’s roadway system—highways, county roads, township roads and city streets—requires approval by each governing authority along the route. Roadway managers must review hauler travel plans to make sure size and weight limits for vehicles and loads will not endanger roadway facilities, hauler equipment and personnel before issuing the over-size or overweight permit.

Any single hauling route may require permits from multiple roadway authorities, each with different application procedures and response times. Some governing bodies, MnDOT among them, issue these permits online and can turn them around in minutes. Other agencies issue permits by mail, fax or email, which can take several days.

Haulers, however, may not have time to wait for a permit. If equipment breaks down at a loading site, for example, replacement equipment is needed immediately to meet contract deadlines and avoid paying labor costs for idle workers. A construction emergency may also demand large equipment be towed to a site. In situations like these, haulers often make the trip without appropriate permitting, accepting the legal and safety risks.

What Was Our Goal?

To simplify the permitting process, Minnesota local agencies would like to develop an online permitting application process that would allow permit-seekers to determine routes based on their vehicle and load size, and secure all necessary permits at one time. This research, the first phase of a multiphase study, aimed to determine the feasibility of a one-stop, unified permitting process by studying its technological and operational needs and gathering input from various stakeholders.

What Did We Do?

Investigators worked with the Technical Advisory Panel (TAP) and a group of policy experts from county and state agencies, commercial haulers and consultants to identify audiences with a stake in a unified permitting process. During meetings in northern Minnesota and in the Twin Cities area, investigators and TAP members met with key stakeholders: haulers and representatives from industry organizations; seven MnDOT offices (including Freight and Commercial Vehicle Operations, Information Technology, Maintenance and Geospatial Information); Minnesota counties; the City of Duluth; the Duluth-Superior Metropolitan Interstate Council; Minnesota State Patrol; the State Patrol Commercial Vehicle Section; and a county sheriff’s office.

The research team identified the challenges and needs of each stakeholder and organized the concerns according to policy, process and technology. Then they explored solutions that would allow the development of a one-stop permitting process.

What Did We Learn?

Researchers determined that a unified permitting process is feasible. Policy issues include the need to standardize general provisions statewide, such as travel hours, insurance requirements and warning devices such as flagging needs. For example, currently the color of flags and lettering on banners vary from jurisdiction to jurisdiction; well-framed general provisions could make these requirements more uniform to serve multiple jurisdictions. The information required by each governing authority in its permit applications could also be normalized.

Process issues were about workflow. More than 80 percent of hauler requests are repeat-able: A commercial haul may be run on the same route with the same-size load three times a month for four months and may not require a full reapplication each time. Some agencies rely on paper, fax or emails to receive permit requests; others purchase permit-ting software; still others build their own software. These systems could be made more uniform so they could interact and share information among agencies.

Technology issues called for an interoperable system that could bring together geographic information system (GIS) capabilities and regulatory data that could be both received and shared. Mapping data could identify each permit required along a route being developed, and a portal could allow agencies to share information as well as allow permit-seekers to enter information and retrieve permits themselves. A portal could also integrate different software packages while offering information like Minnesota’s Gopher State One Call digging hotline.

What’s Next?

In Phase II of this project, which has already begun, researchers will develop a pilot portal that allows users to create route plans, identify permits needed and apply for all permits in one action. Investigators will test the platform with a three-county group. If this effort is successful, researchers will build a unified permitting process for use within all jurisdictions in Minnesota.

MnDOT is also enhancing its software for handling oversize/overweight permits and carrier credentials. Transportation Research Synthesis 1704 surveyed state agencies about current offerings.


This post pertains to the LRRB-produced Report 2017-26, “Oversize/Overweight Vehicle Unified Permitting Process (UPP) Phase I,” published August 2017. 

MnDOT Chooses EasyMile for Autonomous Shuttle Bus Project

ST. PAUL, Minn. – The Minnesota Department of Transportation chose EasyMile, a France-based company specializing in driverless technology, to lead its autonomous shuttle bus pilot project. MnDOT announced in June it will begin testing the use of an autonomous shuttle bus in a cold weather climate.

“We’re excited to partner with EasyMile to help MnDOT test autonomous technology,” said Jay Hietpas, MnDOT state traffic engineer and project manager. “Their expertise will help us learn how these vehicles operate in a winter weather environment so we can advance this technology and position MnDOT and Minnesota as a leader.”

EasyMile, which has a location in Colorado, has conducted driverless technology cold weather tests in Finland and Norway. Minnesota will be their first cold weather test site in the U.S. EasyMile will use its EZ10 electric shuttle bus that has already transported 160,000 people more than 60,000 miles in 14 countries. The shuttle was tested in various environments and traffic conditions. During these tests, the shuttle operated crash-free.

The shuttle operates autonomously at low speeds on pre-mapped routes. It can transport between six and 12 people.

Initially, it will be tested at MnROAD, which is MnDOT’s pavement test facility. Testing will include how the shuttle operates in snow and ice conditions, at low temperatures and on roads where salt is used.

Testing is scheduled to start in November and go through February 2018. The shuttle will also be showcased during the week of the 2018 Super Bowl.

Hietpas said 3M will also be a partner in the project so the company can research various connected vehicle concepts including sensor enhancement and advanced roadway safety materials. When optimized, these materials would aid in safe human and machine road navigation.


Read more about the autonomous shuttle bus pilot project:


Related MnDOT research:

Clearly Marked Bicycle Lanes Enhance Safety and Traffic Flow

Researchers evaluated bicycle and motor vehicle interactions at nine locations in Duluth, Mankato, Minneapolis and St. Paul,in a study sponsored by the Minnesota Local Road Research Board to better understand how bicycle facilities affect traffic. Results show that on shared roadways without clearly marked bicycle facilities, drivers are more inclined to pass bicyclists, encroach on other traffic lanes or line up behind bicyclists than on roadways with clearly striped or buffered facilities.

“This project gave us qualitative information and some quantitative information. The observations made provide something we can build on,” said James Rosenow, Design Flexibility Engineer, MnDOT Office of Project Management & Technical Support.

“The solid line makes the absolute difference in bicycle facilities— something that we haven’t seen in any other study. We found that the presence of a clearly marked or buffered bicycle lane makes a large difference in the way drivers behave around bicyclists,” said John Hourdos, Director, Minnesota Traffic Observatory, University of Minnesota.

What Was the Need?

The availability of multimodal traffic facilities encourages travelers to use a range of transportation methods, from driving to riding on public transit and bicycling. Although bicycle use is low compared to motor vehicle and public transit use, MnDOT’s Complete Streets program encourages cities and counties to dedicate roadway space to bicycle facilities to expand transportation options and “maximize the health of our people, economy and environment.”

Planners and engineers typically consider bicycle facilities from the bicyclist’s perspective. It is less common to design and plan for bicycle use from the driver’s perspective. However, effective multimodal planning requires an understanding of how bicycles affect traffic if congestion-causing interactions are to be avoided, particularly on high-volume roads. Bicycle facilities must invite use, ensure safety for all road users and at the same time not slow traffic.

What Was Our Goal?

This project aimed to investigate interactions between drivers and bicyclists on urban roadways that employ various bicycle facility designs, and to determine how different bicycle facilities affect traffic. Researchers sought to look at bicycle facilities from the driver’s point of view.

What Did We Do?

Pavement markings with directional arrows and a bicycle icon, called sharrows.
Sharrows can be marked with or without stripes. By themselves, sharrows seem to have no more impact on traffic than do no bicycle facilities at all.

The investigation team reviewed 44 bicycle facility design manuals and guidance documents, 31 research papers on implementation or assessment of facility designs, and design manuals used by seven other Complete Streets programs from around the United States to identify facility designs that warranted further study.

With help from the MnDOT Technical Advisory Panel and local planners, the team selected nine sites in Duluth, Mankato, Minneapolis and St. Paul that offered a range of facilities—buffered bicycle lanes, striped bicycle lanes, sharrows (shared-use arrows), signed shared lanes and shoulders of various widths.

At each site, they set up one to three cameras and videotaped during daylight hours for five to 51 days. Researchers then trimmed the video data into relevant car-and-bicycle-interaction time frames. This yielded from 16 to 307 hours of video from each site for detailed analysis.

The research team then reviewed the video and analyzed how drivers behaved when encountering bicyclists on roads with and without bicycling facilities. Researchers grouped driver behavior into five categories: no change in trajectory, deviation within lane, encroachment on adjacent lane, completion of full passing maneuver and queuing behind bicyclists. Researchers confirmed their observations with statistical modeling. After analyzing the results of behavior as it correlated with facility type, researchers presented the traffic flow implications of different bicycle facility designs.

What Did We Learn?

  • Literature Review. Almost all design guidance drew heavily on directives from the American Association of State Highway and Transportation Officials or the National Association of City Transportation Officials. Of the 62 bicycle facility design elements identified in bicycle guidance documents, fewer than half have been studied in any way for efficacy, safety or traffic impact.
  • Video Analysis. On roadways with sharrows, signs for shared lanes or no bicycle facilities, drivers were more likely to encroach on adjacent lanes than were drivers on road-ways with buffered or striped bicycle lanes. Queuing, or lining up behind bicyclists, showed the greatest potential to impact traffic flows. The highest rates of lining up occurred on roads without bicycle facilities and roads with shared facilities but no marked lanes.
  • Implications. Sharrows may alert drivers to the presence of bicyclists, but in the impact they make on traffic, sharrows differ little from no bicycle facilities. Roadways with signs indicating shared lanes also show little difference in driver behavior from roadways with no facilities. Therefore, where space allows, buffered or striped bicycle lanes should be used instead of sharrows or signs to increase the predictability of driver behavior and reduce queuing impacts on traffic.

What’s Next?

This study provides enough data to support the recommendation of dedicated, striped or buffered bicycle facilities where demand or interest exists. However, the detailed video analysis conducted for this project provides only part of a three-dimensional study of the efficacy and value of various bicycle facility designs. Further study will be needed to quantify facility and vehicle-bicycle interaction in terms of other traffic impacts like speed and traffic flow coefficients, and to quantify crash rates and other safety impacts. Research is also needed to investigate bicycle facility demand and bicycle use on road-ways that do not currently have bicycle facilities.


This post pertains to the LRRB-produced Report 2017-23, “Traffic Impacts of Bicycle Facilities,” published June 2017.

New manual helps agencies count bike, pedestrian traffic

As part of an ongoing effort to institutionalize bicycle and pedestrian counting in Minnesota, MnDOT has published a new manual designed to help city, county, state, and other transportation practitioners in their counting efforts.

The Bicycle and Pedestrian Data Collection Manual, developed by University of Minnesota researchers and SRF Consulting Group, provides guidance and methods for collecting bicycle and pedestrian traffic data in Minnesota. The manual is an introductory guide to nonmotorized traffic monitoring designed to help local jurisdictions, nonprofit organizations, and consultants design their own programs.Bicycle and Pedestrian Data Collection Manual

Topics covered in the manual include general traffic-monitoring principles, bicycle and pedestrian data collection sensors, how to perform counts using several types of technologies, data management and analysis, and next steps for nonmotorized traffic monitoring in Minnesota. Several case studies illustrate how bicycle and pedestrian traffic data can be used to support transportation planning and engineering.

The manual was completed as part of the third in a series of MnDOT-funded projects related to the Minnesota Bicycle and Pedestrian Counting Initiative, a collaborative effort launched by MnDOT in 2011 to encourage nonmotorized traffic monitoring across the state. U of M researchers, led by professor Greg Lindsey at the Humphrey School of Public Affairs, have been key partners in the initiative since its inception.

In addition to the manual, U of M researchers have published a final report outlining their work with MnDOT on this project. Key accomplishments include:

  • A new statewide bicycle and pedestrian traffic-monitoring network with 25 permanent monitoring locations
  • A district-based portable counting equipment loan program to support MnDOT districts and local jurisdictions interested in nonmotorized traffic monitoring
  • Minnesota’s first Bicycle and Pedestrian Annual Traffic Monitoring Report
  • A MnDOT website for reporting annual and short-duration counts that allows local planners and engineers to download data for analysis
  • Provisions added to MnDOT equipment vendor agreements that enable local governments to purchase bicycle and monitoring equipment
  • Annual training programs for bicycle and pedestrian monitoring
  • Provisions in the Statewide Bicycle System Plan and Minnesota Walks that call for bicycle and pedestrian traffic monitoring and creation of performance measures based on counts

“This is an excellent resource that steps through all aspects of managing a count program, and I think it will be very helpful to other states and organizations that want to implement their own programs,” says Lisa Austin, MnDOT bicycle and pedestrian planning coordinator. “Since Minnesota is a leader in counting bicycle and pedestrian traffic, it also fulfills what I think is an obligation to share our story with others.”

Bicycling industry, events have economic impact in Minnesota

The bicycling industry in Minnesota—including manufacturing, wholesaling, retail sales, and non-profits and advocacy groups—produced an estimated total of $780 million of economic activity in 2014. This includes 5,519 jobs and $209 million in annual labor income (wages, salaries, and benefits) paid to Minnesota workers.

These findings are an important component of a multifaceted report from U of M researchers. Their research, funded by MnDOT, provides a comprehensive understanding of the economic impact and health effects of bicycling in Minnesota.

“This kind of bicycling study is definitely new for Minnesota but also new nationally,” says Sara Dunlap, principal planner in MnDOT’s Office of Transit. “This is the first time a state has attempted to assess, in a single study, the multiple impacts that bicycling activities have on the state’s economy and health.”

Xinyi Qian, an Assistant Extension Professor in the U’s Tourism Center, was the project’s principal investigator. For the bicycling industry portion of the work, the co-investigators were Neil Linscheid, Extension Educator, and Brigid Tuck, senior economic impact analyst, both with U of M Extension.

“Information about the bicycling industry is scattered, so we filled the information gaps by creating a list of bicycle-related businesses in Minnesota, interviewing bicycle-related business leaders, surveying bicycle-related businesses, and gathering additional information from relevant sources,” Linscheid says. “Numerous industries and a diverse supply chain are involved.”  The research team then used this information to enhance an economic model that shows the economic contribution of the bicycling industry in Minnesota.

“Minnesota has a strong bicycle-related manufacturing industry that drives the bicycle-related economy,” Tuck says. “Specialty bicycle retail stores, especially independent ones, are a critical component of the bicycle retail industry in Minnesota.” Additionally, she says, when asked about local suppliers, bicycling businesses often provided names of other Minnesota companies, many of which are also bicycle-related businesses.

Researchers also looked at the economic impact of bicycling events—races, non-race rides, fundraising events, mountain bicycling events, high school races, and bicycle tours. Qian led this portion of the study, working with Tuck.

Through surveys and analysis, they found that an average bicycle event visitor in 2015 spent a total of $121 per day. This spending translates into an estimated total of $14 million of annual economic activity, which includes $5 million in annual labor income and 150 jobs. Event participants also brought additional people with them— more than 19,000 visitors who were travel companions but did not ride in any event.

The findings can help bring together event organizers and officials of various organizations—economic development, transportation, public health, and tourism—to promote the event facilities, the host communities, and bicycle tourism as a whole.

“Bicycling event attendees and their travel companions are a valuable audience for shopping, recreation, and amusement activities,” Qian says. “Communities hosting events could explore opportunities to capture additional spending from these important visitors.”

Qian notes that the analysis focused on event visitors and was not a broad measure of bicycle tourism.

A previous post discussed the health impacts component of the study; in April, we’ll report on the magnitude of biking in the state.

More information:

Mobility, labor, and competitiveness drive discussion at annual freight symposium

How does the ability to move freight affect the economic health of a state, region, and even a city? How are the supply chains of businesses impacted by freight flow? And what challenges and opportunities does Minnesota face when it comes to leveraging and strengthening its freight modes?

The 2016 Freight and Logistics Symposium offered a thoughtful examination of those questions and explored other topics related to improved mobility in Minnesota, including congestion, regulation, labor shortages, and the value of all freight modes to the state’s economy.

The event, held December 2, 2016, in Minneapolis, included:

  • A presentation on the power of freight flow data in attracting industry to a location and ways to use data in making a compelling case for businesses to invest
  • A panel Q&A featuring four industry experts from diverse organizations that depend on reliable freight movement
  • A discussion of how the 2016 election results may affect freight transportation

For a full summary of the event, download the 2016 Freight and Logistics Symposium proceedings (PDF).


The symposium was sponsored by CTS in cooperation with MnDOT, the Minnesota Freight Advisory Committee, the Council of Supply Chain Management Professionals, the Metropolitan Council, and the Transportation Club of Minneapolis and St. Paul.

Bicycle commuting improves public health, reduces medical costs

According to the results of a new study, bicycle commuting in the Twin Cities metropolitan area reduces chronic illness and preventable deaths, saving millions of dollars annually in medical costs.

The findings are one component of a multifaceted project funded by MnDOT. In the final report, researchers in several U of M departments provide a comprehensive understanding of the economic impact and health effects of bicycling in Minnesota.

“MnDOT has long identified bicycling as an important part of the state’s multimodal transportation system,” says Tim Henkel, modal planning and program management assistant commissioner. “This first-ever study generated new information that will inform policy and program strategies on bicycling as we determine levels of future investment.”

Xinyi Qian, an Assistant Extension Professor in the U’s Tourism Center, was the project’s principal investigator. Dr. Mark Pereira of the School of Public Health, one of the co-investigators, led the health component of the project.

Pereira’s team began by measuring the amount of bicycle commuting among Twin Cities adults using data from the 2014 Minnesota State Survey. (The counties included were Anoka, Carver, Dakota, Hennepin, Ramsey, Scott, and Washington.) The team found that 13.4 percent of working-age metro-area residents (244,000 adults) bicycle to work at least occasionally, and the average bicycle commuter rides 366 miles per year.

The researchers next estimated the number of deaths prevented from that amount of bicycling using the Health Economic Assessment Tool developed by the World Health Organization (WHO). Their analysis found that bicycle commuting in the metro area prevents 12 to 61 deaths per year, saving $100 million to $500 million annually. “At current levels, roughly 1 death per year is prevented for every 10,000 cyclists,” he says.

The WHO tool estimates savings from prevented deaths but not from prevented disease. To estimate the effect of bicycling commuting on illness, researchers conducted an online survey of Twin Cities cyclists; participants also included three commuter groups and a bicycle parts manufacturer.

“We learned that bicycling is linked to lower risk of metabolic syndrome, obesity, and hypertension,” Pereira says. “For example, taking three additional bicycle trips per week is associated with 46 percent lower odds of metabolic syndrome, 32 percent lower odds of obesity, and 28 percent lower odds of hypertension.”

The illness assessment provides relative risk estimates that planners can use in cost-benefit analyses. “Current methods only consider risk reductions related to death rates, so the benefit of infrastructure projects is underestimated,” Pereira says. “By providing an estimate of the risk reductions for diabetes and heart disease related to cycling, we provide an input that will help project planners more accurately represent the benefits of these projects.”

While the research was conducted in the Twin Cities, the methods can be used in other locations and to compare changes over time. “The findings also provide a foundation for transportation and health care officials to take action,” Pereira says, citing several options:

  • Promote active transportation through policies and intervention programs, e.g., employer incentives.
  • Develop consistent safety education and encouragement messages statewide to increase bicycle commuting.
  • Continue to encourage and implement safe bicycling to school and access to bicycles for youth across the state.

For millennials, car ownership and family life may not be obstacles to transit use

As the millennial generation comes of age, indications of a significant generational change in travel behavior have raised hopes of robust growth in transit use. As a whole, this generation owns fewer cars, drives fewer miles, and uses transit more than previous generations. However, one key question remains: will millennials continue their high rates of transit use as the economy improves and they increasingly settle down and start families?

“In older generations we have seen significant declines in transit use that coincide with the transition to family life and child rearing,” says Andrew Guthrie, a research fellow and Ph.D. candidate at the Humphrey School of Public Affairs. To gain insight into the question of whether the millennial generation will be different, Guthrie looked for changes in the extent that two factors—young children in a household and access to a vehicle—affect transit use.

The study, conducted with Humphrey School associate professor Yingling Fan, looked for evidence of these bellwether changes in the Minneapolis–Saint Paul region between 2000 and 2010. This period saw the opening of the region’s first modern light-rail line as well as numerous bus system improvements, including a network of high-frequency local routes. In addition, the region has a strong, knowledge-based economy and has seen an in-migration of millennials.

The researchers used data from the detailed Travel Behavior Inventory conducted by the Twin Cities Metropolitan Council in 2000 and 2010 to compare travel behavior at both the trip and person levels.

Their analysis revealed that both young children in a household and access to an automobile have become “weakening obstacles” to transit use. “Specifically, research models show that participants with access to an automobile were more likely to use transit in 2010 than in 2000, and that participants with young children in their households were less likely than others to use transit in 2000 but not in 2010,” Guthrie says.

“Our models provide strong evidence that the basic relationship between transit use and the presence of young children in a household has changed, as has the relationship between transit use and access to an automobile,” Fan adds. “In fact, regardless of the specific modeling approach, these two traditional obstacles to transit use either weakened or disappeared entirely between 2000 and 2010 in the Twin Cities region.”

According to the researchers, the findings suggest that transit may now be better able to hold on to market share as its millennial users mature and start families, especially in urban areas where walk-and-ride trips are most common. In order to attract and accommodate these transit users, researchers believe ensuring an adequate supply of family housing and family-oriented community features such as high-quality schools and playgrounds in transit-served areas will be critical.

The research this paper was based on was part of a larger project funded by the Metropolitan Council and MnDOT. The paper was recently published in the Transportation Research Record.

Minnesota Partners with Neighboring States to Improve Traveler Information

Interstates 90 and 94 between Wisconsin and the state of Washington are major corridors for commercial and recreational travel. Extreme winter weather conditions, prevalent in the northern states within this corridor, pose significant operational and travel-related challenges. Recognizing the value of coordinated, cross-border collaboration for ITS deployment, Minnesota spearheaded the development of a transportation pooled fund study, called North/West Passage, in 2003.

The eight states – Minnesota, Idaho, Montana, North Dakota, South Dakota, Washington, Wisconsin and Wyoming – involved in the study are predominantly rural and face similar transportation issues related to traffic management, traveler information and commercial vehicle operations. They developed an ITS Integrated Work Plan and have completed nine work plans containing 50 projects.

North West Passage Traveler Information Website (roadstosafediscovery.com), the group’s hallmark project, offers travel information for I-90 and I-94 in a single interactive map. In addition to checking weather conditions, road closures and temporary truck restrictions, motorists can find the location of gas stops, rest areas and parks.

The states are currently evaluating a program that allows citizens to report driving conditions so that they can be included in traveler information reporting (a pilot is underway with MnDOT’s 511 system), and another project is comparing winter maintenance practices between corridor states.

“The biggest benefit of this pooled fund study is that it allows MnDOT to see what its neighbors are doing when developing solutions for operational issues. This awareness really helps us make better decisions about our projects at the state level,” said Cory Johnson, Traffic Research Director, MnDOT Office of Traffic, Safety and Technology.

Other major accomplishments:

  • North and South Dakota 511 callers can select to receive information on Minnesota’s highways.
  • An online portal for coordination of traffic management center operations, including guidelines, maps and contact information to manage major events across states.
  • Development of one proposal to hire a contractor to perform work in two states.
A map of possible routes from Milwaukee going west past North Dakota, with boxes the user can check to show Road Work, Weather Alerts, Road Conditions, and other features of the route.
Eight states maintain the North West Passage Traveler Information Website, which shows real-time travel information between Wisconsin and Washington along Interstates 90 and 94. A mobile app is under development.

For more than 30 years, the Federal Highway Administration’s (FHWA’s) Transportation Pooled Fund (TPF) Program has been providing state departments of transportation and other organizations the opportunity to collaborate in solving transportation-related problems. The TPF Program is focused on leveraging limited funds, avoiding duplication of effort, undertaking large-scale projects and achieving broader dissemination of results on issues of regional and national interest.

‘New logistics’ will change the way goods are delivered—and how the road network is used

Today, moving freight accounts for more than a third of the world’s transport energy—and that share is growing. The rise in global trade, online retailing, and business-to-business delivery is not only changing how goods are moved but also the type of goods moved and how far or frequently they are transported.

Currently, this massive movement of goods throughout the economy relies on an intricate—and largely decentralized—multimodal network of truck, rail, ship, and airplane delivery. However, change is on the horizon. In a study sponsored by MnDOT and the Minnesota Local Road Research Board, U of M experts outline the important impacts these changes will have on the road network and transportation infrastructure.

“There is hope that new methods of organization and proposed standardization will increase efficiency of freight movement and give rise to a new era of goods transport,” says Adam Boies, an assistant professor in the Department of Civil, Environmental, and Geo- Engineering (CEGE). “In the years to come, we expect that advances in logistics systems will be enabled by new technologies, approaches, and the desire for increased efficiency.”newlogistics2

Changes in the way logistics operations are organized will help drive advances. New information technology permits the sharing of data between and across businesses, which in turn drives efficiency and leads to fuller vehicles. “This may reduce the distance traveled by heavy goods vehicles per unit of GDP, which may in turn reduce costs and entice more demand for delivered goods,” says CEGE professor David Levinson, the study’s principal investigator. “Ultimately, this could mean fewer trips by individual consumers and more deliveries. We anticipate the result will be a net reduction in distance traveled.”

The study also examined some of the potential drivers for changes in the freight industry as a result of logistics reorganization. These include supply chain pooling, in which individual logistics operations are shared between collaborators, and the Physical Internet Initiative, which seeks to create standards for packaging to enable the homogenization of freight technology. “While both of these advancements have the potential to increase logistics efficiency by reducing the transportation of empty loads, they will also increase truck weights—which may increase pavement damage,” Boies says.

Other transportation and logistics changes will result from shifts in the ways businesses and consumers receive goods and services, including business-to-business systems and technologies that enable a sharing economy, same-day delivery services, 3-D printing, and “last mile” delivery services. In addition, a growing portion of purchases can be delivered directly over the Internet. “Delivery is easily automated for data-based goods like books, music, video, and software,” Levinson says. “Purchases that could once only be completed by moving things can now be done by moving data.”

The research is part of a multi-pronged study that analyzed the technological shifts altering surface transportation and the implications for Minnesota. Findings are available in a final report: The Transportation Futures Project: Planning for Technology Change.